971 resultados para Molecular beam epitaxial growth
Resumo:
We present results of scanning transmission electron tomography on GaN/(In,Ga)N/GaN nanocolumns (NCs) that grew uniformly inclined towards the patterned, semi-polar GaN( 112̄ 2 ) substrate surface by molecular beam epitaxy. For the practical realization of the tomographic experiment, the nanocolumn axis has been aligned parallel to the rotation axis of the electron microscope goniometer. The tomographic reconstruction allows for the determination of the three-dimensional indium distribution inside the nanocolumns. This distribution is strongly interrelated with the nanocolumn morphology and faceting. The (In,Ga)N layer thickness and the indium concentration differ between crystallographically equivalent and non-equivalent facets. The largest thickness and the highest indium concentration are found at the nanocolumn apex parallel to the basal planes.
Resumo:
Pronounced electrocatalytic oxidation enhancement at the surface of InGaN layers and nanostructures directly grown on Si by plasma-assisted molecular beam epitaxy is demonstrated. The oxidation enhancement, probed with the ferro/ferricyanide redox couple increases with In content and proximity of nanostructure surfaces and sidewalls to the c-plane. This is attributed to the corresponding increase of the density of intrinsic positively charged surface donors promoting electron transfer. Strongest enhancement is for c-plane InGaN layers functionalized with InN quantum dots (QDs). These results explain the excellent performance of our InN/InGaN QD biosensors and water splitting electrodes for further boosting efficiency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Molecular dynamics simulations are used to study the interaction of low-energy Ar atoms with the Ni(001) surface, Angular scattering distributions, in and out of the plane of incidence, are investigated as a function of incident energy, angles of incidence, crystallographic orientation of the incident beam and surface temperature. The results show a clear transition to the structure scattering regime at around 2 eV. However, at lower energies, two sub-regimes are revealed by the simulations, Far energies up to 250 meV, scattering is mainly diffuse, and significant trapping on the surface is observed, At energies above this level, lobular patterns start to form and trapping decreases with the increase in energy, Generally, there is a weak temperature dependence, but variations in the angle of incidence and/or changes in the crystallographic direction, generate significant changes in the scattering patterns.
Resumo:
A sensitive method based on the principle of photothermal phenomena to study the energy transfer processes in organic dye mixtures is presented. A dual beam thermal lens method can be very effectively used as an alternate technique to determine the molecular distance between donor and acceptor in fluorescein–rhodamine B mixture using optical parametric oscillator.
Resumo:
Inhibition of myostatin signalling or its biological activity has recently emerged as a potential remedial approach against muscle wasting and degenerative diseases such as muscular dystrophies. In the present study we systemically administered a recombinant AAV8 vector expressing a mutated myostatin propeptide (AAV8ProMyo) to healthy mice in order to assess its impact on the histological, cellular and physiological properties of the skeletal muscle, exploiting the fact that myostatin is naturally inhibited by its own propeptide. We report that a single intravenous administration of AAV8ProMyo leads to increases in muscle mass of tibialis anterior, extensor digitorum longus and gastrocnemius muscles 8 weeks post-injection and tibialis anterior, gastrocnemius and rectus femoris muscles 17 weeks post-injection. Moreover, treatment resulted in muscle fibre hypertrophy but not hyperplasia, with IIB myofibres responding to the greatest extent following propeptide-induced myostatin inhibition. Additionally, myofibre nuclear: cytoplasmic ratio was decreased in the AAV8ProMyo treated animals. Importantly, the hypertrophic EDL muscle 8 weeks after AAV8ProMyo treatment did not show the dramatic decrease in specific force displayed by the germline myostatin null mice. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.
Resumo:
Barley can be classified into three major agronomic types, based on its seasonal growth habit (SGH): spring, winter and alternative. Winter varieties require exposure to vernalization to promote subsequent flowering and are autumn-sown. Spring varieties proceed to flowering in the absence of vernalization and are sown in the spring. The ‘alternative’ (also known as ‘facultative’) SGH is only loosely defined and can be sown in autumn or spring. Here, we investigate the molecular genetic basis of alternative barley. Analysis of the major barley vernalization (VRN-H1, VRN-H2) and photoperiod (PPD-H1, PPD-H2) response genes in a collection of 386 varieties found alternative SGH to be characterized by specific allelic combinations. Spring varieties possessed spring loci at one or both of the vernalization response loci, combined with long-day non-responsive ppd-H1 alleles and wild-type alleles at the short-day photoperiod response locus, PPD-H2. Winter varieties possessed winter alleles at both vernalization loci, in combination with the mutant ppd-H2 allele conferring delayed flowering under short-day photoperiods. In contrast, all alternative varieties investigated possessed a single spring allele (either at VRN-H1 or at VRN-H2) combined with mutant ppd-H2 alleles. This allelic combination is found only in alternative types and is diagnostic for alternative SGH in the collection studied. Analysis of flowering time under controlled environment found alternative varieties flowered later than spring control lines, with the difference most pronounced under short-day photoperiods. This work provides genetic characterization of the alternative SGH phenotype, allowing precise manipulation of SGH and flowering time within breeding programmes, and provides the molecular tools for classification of all three SGH categories within national variety registration processes.
Resumo:
This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.
Resumo:
Tuberculosis (TB) is a major cause of morbidity and mortality throughout the world, and it is estimated that one-third of the world`s population is infected with Mycobacterium tuberculosis. Among a series of tested compounds, we have recently identified five synthetic chalcones which inhibit the activity of M. tuberculosis protein tyrosine phosphatase A (PtpA), an enzyme associated with M. tuberculosis infectivity. Kinetic studies demonstrated that these compounds are reversible competitive inhibitors. In this work we also carried out the analysis of the molecular recognition of these inhibitors on their macromolecular target, PtpA, through molecular modeling. We observed that the predominant determinants responsible for the inhibitory activity of the chalcones are the positions of the two methoxyl groups at the A-ring, that establish hydrogen bonds with the amino acid residues Arg17, His49, and Thr12 in the active site of PtpA, and the substitution of the phenyl ring for a 2-naphthyl group as B-ring, that undergoes p stacking hydrophobic interaction with the Trp48 residue from PtpA. Interestingly, reduction of mycobacterial survival in human macrophages upon inhibitor treatment suggests their potential use as novel therapeutics. The biological activity, synthetic versatility, and low cost are clear advantages of this new class of potential tuberculostatic agents. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B.jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of I 18 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of P-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn. (C) 2002 Societe francaise de biochimie et biologic moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)