950 resultados para Mobile Robot Navigation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a fast and precise method to estimate the planar motion of a lidar from consecutive range scans. For every scanned point we formulate the range flow constraint equation in terms of the sensor velocity, and minimize a robust function of the resulting geometric constraints to obtain the motion estimate. Conversely to traditional approaches, this method does not search for correspondences but performs dense scan alignment based on the scan gradients, in the fashion of dense 3D visual odometry. The minimization problem is solved in a coarse-to-fine scheme to cope with large displacements, and a smooth filter based on the covariance of the estimate is employed to handle uncertainty in unconstraint scenarios (e.g. corridors). Simulated and real experiments have been performed to compare our approach with two prominent scan matchers and with wheel odometry. Quantitative and qualitative results demonstrate the superior performance of our approach which, along with its very low computational cost (0.9 milliseconds on a single CPU core), makes it suitable for those robotic applications that require planar odometry. For this purpose, we also provide the code so that the robotics community can benefit from it.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Safe collaboration between a robot and human operator forms a critical requirement for deploying a robotic system into a manufacturing and testing environment. In this dissertation, the safety requirement for is developed and implemented for the navigation system of the mobile manipulators. A methodology for human-robot co-existence through a 3d scene analysis is also investigated. The proposed approach exploits the advance in computing capability by relying on graphic processing units (GPU’s) for volumetric predictive human-robot contact checking. Apart from guaranteeing safety of operators, human-robot collaboration is also fundamental when cooperative activities are required, as in appliance test automation floor. To achieve this, a generalized hierarchical task controller scheme for collision avoidance is developed. This allows the robotic arm to safely approach and inspect the interior of the appliance without collision during the testing procedure. The unpredictable presence of the operators also forms dynamic obstacle that changes very fast, thereby requiring a quick reaction from the robot side. In this aspect, a GPU-accelarated distance field is computed to speed up reaction time to avoid collision between human operator and the robot. An automated appliance testing also involves robotized laundry loading and unloading during life cycle testing. This task involves Laundry detection, grasp pose estimation and manipulation in a container, inside the drum and during recovery grasping. A wrinkle and blob detection algorithms for grasp pose estimation are developed and grasp poses are calculated along the wrinkle and blobs to efficiently perform grasping task. By ranking the estimated laundry grasp poses according to a predefined cost function, the robotic arm attempt to grasp poses that are more comfortable from the robot kinematic side as well as collision free on the appliance side. This is achieved through appliance detection and full-model registration and collision free trajectory execution using online collision avoidance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Teleoperation is a concept born with the rapid evolution of technology, with an intuitive meaning "operate at a distance." The first teleoperation system was created in the mid 1950s, which were handled chemicals. Remote controlled systems are present nowadays in various types of applications. This dissertation presents the development of a mobile application to perform the teleoperation of a mobile service robot. The application integrates a distributed surveillance (the result of a research project QREN) and led to the development of a communication interface between the robot (the result of another QREN project) and the vigilance system. It was necessary to specify a communication protocol between the two systems, which was implemented over a communication framework 0MQ (Zero Message Queue). For the testing, three prototype applications were developed before to perform the test on the robot.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When underwater vehicles perform navigation close to the ocean floor, computer vision techniques can be applied to obtain quite accurate motion estimates. The most crucial step in the vision-based estimation of the vehicle motion consists on detecting matchings between image pairs. Here we propose the extensive use of texture analysis as a tool to ameliorate the correspondence problem in underwater images. Once a robust set of correspondences has been found, the three-dimensional motion of the vehicle can be computed with respect to the bed of the sea. Finally, motion estimates allow the construction of a map that could aid to the navigation of the robot

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the problem of navigation for an unmanned underwater vehicle (UUV) through image mosaicking. It represents a first step towards a real-time vision-based navigation system for a small-class low-cost UUV. We propose a navigation system composed by: (i) an image mosaicking module which provides velocity estimates; and (ii) an extended Kalman filter based on the hydrodynamic equation of motion, previously identified for this particular UUV. The obtained system is able to estimate the position and velocity of the robot. Moreover, it is able to deal with visual occlusions that usually appear when the sea bottom does not have enough visual features to solve the correspondence problem in a certain area of the trajectory

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Severely disabled children have little chance of environmental and social exploration and discovery. This lack of interaction and independency may lead to an idea that they are unable to do anything by themselves. In an attempt to help children in this situation, educational robotics can offer and aid, once it can provide them a certain degree of independency in the exploration of environment. The system developed in this work allows the child to transmit the commands to a robot through myoelectric and movement sensors. The sensors are placed on the child's body so they can obtain information from the body inclination and muscle contraction, thus allowing commanding, through a wireless communication, the mobile entertainment robot to carry out tasks such as play with objects and draw. In this paper, the details of the robot design and control architecture are presented and discussed. With this system, disabled children get a better cognitive development and social interaction, balancing in a certain way, the negative effects of their disabilities. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Progetto SHERPA. Installazione e configurazione del Navigaton Stack su Rover terrestre. Utilizzo e configurazione di LMS151 Sick. Utilizzo e configurazione di Asus Xtion Pro. Progettazione di software per la localizzazione e l'inseguimento di persone tramite camera di profondita.