860 resultados para Mining reserves
Resumo:
Objective: To explore fly-in fly-out (FIFO) mining workers' attitudes towards the leisure time they spend in mining camps, the recreational and social aspects of mining camp culture, the camps' communal and recreational infrastructure and activities, and implications for health. Design: In-depth semistructured interviews. Setting: Individual interviews at locations convenient for each participant. Participants: A total of seven participants, one female and six males. The age group varied within 20–59 years. Marital status varied across participants. Main outcome measures: A qualitative approach was used to interview participants, with responses thematically analysed. Findings highlight how the recreational infrastructure and activities at mining camps impact participants' enjoyment of the camps and their feelings of community and social inclusion. Results: Three main areas of need were identified in the interviews, as follows: (i) on-site facilities and activities; (ii) the role of infrastructure in facilitating a sense of community; and (iii) barriers to social interaction. Conclusion: Recreational infrastructure and activities enhance the experience of FIFO workers at mining camps. The availability of quality recreational facilities helps promote social interaction, provides for greater social inclusion and improves the experience of mining camps for their temporary FIFO residents. The infrastructure also needs to allow for privacy and individual recreational activities, which participants identified as important emotional needs. Developing appropriate recreational infrastructure at mining camps would enhance social interactions among FIFO workers, improve their well-being and foster a sense of community. Introducing infrastructure to promote social and recreational activities could also reduce alcohol-related social exclusion.
Resumo:
Should not-for-profit (NFP) organisations hold reserves to hedge uncertainty and protect mission delivery? This chapter outlines the nature and contxt of NFP reserves. many would accept that actors within NFP organisations have a broad accountability to ensure sustinability where an appropriate mission exists, and that sustinability is assisted or ensured through the purposeful accumulation of reserves. This chapter examins current relevant literature on reserves, reviews various approaches to reserves accumulation across jurisdictions and reports what is known about practice. We highlight the tension faced by NFP organisations, balancing mission spending against the need to hedge uncertainty. We investigate the role of reserves, and how an appropriate level is determined to ensure a NFP board's accountability for organisational sustinability. This issue is particularly significant in the period following the global financial crisis, and while practitioner interest is evident, there has been little academic attention paid to the topic of NFP reserves, and 'very few [articles] have even forcused on related topics' (Calabrese, 2011, p. 282).
Resumo:
Due to the availability of huge number of web services, finding an appropriate Web service according to the requirements of a service consumer is still a challenge. Moreover, sometimes a single web service is unable to fully satisfy the requirements of the service consumer. In such cases, combinations of multiple inter-related web services can be utilised. This paper proposes a method that first utilises a semantic kernel model to find related services and then models these related Web services as nodes of a graph. An all-pair shortest-path algorithm is applied to find the best compositions of Web services that are semantically related to the service consumer requirement. The recommendation of individual and composite Web services composition for a service request is finally made. Empirical evaluation confirms that the proposed method significantly improves the accuracy of service discovery in comparison to traditional keyword-based discovery methods.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.
Resumo:
Human resources are often responsible for the execution of business processes. In order to evaluate resource performance and identify best practices as well as opportunities for improvement, managers need objective information about resource behaviours. Companies often use information systems to support their processes and these systems record information about process execution in event logs. We present a framework for analysing and evaluating resource behaviour through mining such event logs. The framework provides a method for extracting descriptive information about resource skills, utilisation, preferences, productivity and collaboration patterns; a method for analysing relationships between different resource behaviours and outcomes; and a method for evaluating the overall resource productivity, tracking its changes over time and comparing it with the productivity of other resources. To demonstrate the applicability of our framework we apply it to analyse behaviours of employees in an Australian company and evaluate its usefulness by a survey among managers in industry.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
Resumo:
On our first day in Kalgoorlie, a local woman in her mid-thirties tells us that ‘Kal wouldn’t exist if it wasn’t for mining and prostitution’. In the ensuing days many others would tell us the same thing. More explicitly, in the words of another local resident, ‘The town was founded on brothels. [Without them] the men wouldn’t have been happy and they wouldn’t have got as much gold.’ These two phenomena – mining and prostitution – and their seemingly natural and straightforward connection to each other are also routinely invoked in tourist and popular culture depictions of Kalgoorlie. The Lonely Planet, for example, notes that ‘historically, mineworkers would come straight to town to spend disposable income at Kalgoorlie’s infamous brothels, or at pubs staffed by “skimpies” (scantily clad female bar staff)’.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
This paper describes a series of trials that were done at an underground mine in New South Wales, Australia. Experimental results are presented from the data obtained during the field trials and suitable sensor suites for an autonomous mining vehicle navigation system are evaluated.