782 resultados para Maths lessons execution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design of a power efficient microarchitecture for transient fault detection in chip multiprocessors (CMPs) We introduce a new per-core dynamic voltage and frequency scaling (DVFS) algorithm for our architecture that significantly reduces power dissipation for redundant execution with a minimal performance overhead. Using cycle accurate simulation combined with a simple first order power model, we estimate that our architecture reduces dynamic power dissipation in the redundant core by an mean value of 79% and a maximum of 85% with an associated mean performance overhead of only 1:2%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Workstation clusters equipped with high performance interconnect having programmable network processors facilitate interesting opportunities to enhance the performance of parallel application run on them. In this paper, we propose schemes where certain application level processing in parallel database query execution is performed on the network processor. We evaluate the performance of TPC-H queries executing on a high end cluster where all tuple processing is done on the host processor, using a timed Petri net model, and find that tuple processing costs on the host processor dominate the execution time. These results are validated using a small cluster. We therefore propose 4 schemes where certain tuple processing activity is offloaded to the network processor. The first 2 schemes offload the tuple splitting activity - computation to identify the node on which to process the tuples, resulting in an execution time speedup of 1.09 relative to the base scheme, but with I/O bus becoming the bottleneck resource. In the 3rd scheme in addition to offloading tuple processing activity, the disk and network interface are combined to avoid the I/O bus bottleneck, which results in speedups up to 1.16, but with high host processor utilization. Our 4th scheme where the network processor also performs apart of join operation along with the host processor, gives a speedup of 1.47 along with balanced system resource utilizations. Further we observe that the proposed schemes perform equally well even in a scaled architecture i.e., when the number of processors is increased from 2 to 64

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper, we describe a power-efficient architecture for redundant execution on chip multiprocessors (CMPs) which when coupled with our per-core dynamic voltage and frequency scaling (DVFS) algorithm significantly reduces the energy overhead of redundant execution without sacrificing performance. Our evaluation shows that this architecture has a performance overhead of only 0.3% and consumes only 1.48 times the energy of a non-fault-tolerant baseline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MATLAB is an array language, initially popular for rapid prototyping, but is now being increasingly used to develop production code for numerical and scientific applications. Typical MATLAB programs have abundant data parallelism. These programs also have control flow dominated scalar regions that have an impact on the program's execution time. Today's computer systems have tremendous computing power in the form of traditional CPU cores and throughput oriented accelerators such as graphics processing units(GPUs). Thus, an approach that maps the control flow dominated regions to the CPU and the data parallel regions to the GPU can significantly improve program performance. In this paper, we present the design and implementation of MEGHA, a compiler that automatically compiles MATLAB programs to enable synergistic execution on heterogeneous processors. Our solution is fully automated and does not require programmer input for identifying data parallel regions. We propose a set of compiler optimizations tailored for MATLAB. Our compiler identifies data parallel regions of the program and composes them into kernels. The problem of combining statements into kernels is formulated as a constrained graph clustering problem. Heuristics are presented to map identified kernels to either the CPU or GPU so that kernel execution on the CPU and the GPU happens synergistically and the amount of data transfer needed is minimized. In order to ensure required data movement for dependencies across basic blocks, we propose a data flow analysis and edge splitting strategy. Thus our compiler automatically handles composition of kernels, mapping of kernels to CPU and GPU, scheduling and insertion of required data transfer. The proposed compiler was implemented and experimental evaluation using a set of MATLAB benchmarks shows that our approach achieves a geometric mean speedup of 19.8X for data parallel benchmarks over native execution of MATLAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPUs have been used for parallel execution of DOALL loops. However, loops with indirect array references can potentially cause cross iteration dependences which are hard to detect using existing compilation techniques. Applications with such loops cannot easily use the GPU and hence do not benefit from the tremendous compute capabilities of GPUs. In this paper, we present an algorithm to compute at runtime the cross iteration dependences in such loops. The algorithm uses both the CPU and the GPU to compute the dependences. Specifically, it effectively uses the compute capabilities of the GPU to quickly collect the memory accesses performed by the iterations by executing the slice functions generated for the indirect array accesses. Using the dependence information, the loop iterations are levelized such that each level contains independent iterations which can be executed in parallel. Another interesting aspect of the proposed solution is that it pipelines the dependence computation of the future level with the actual computation of the current level to effectively utilize the resources available in the GPU. We use NVIDIA Tesla C2070 to evaluate our implementation using benchmarks from Polybench suite and some synthetic benchmarks. Our experiments show that the proposed technique can achieve an average speedup of 6.4x on loops with a reasonable number of cross iteration dependences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exciting application of crowdsourcing is to use social networks in complex task execution. In this paper, we address the problem of a planner who needs to incentivize agents within a network in order to seek their help in executing an atomic task as well as in recruiting other agents to execute the task. We study this mechanism design problem under two natural resource optimization settings: (1) cost critical tasks, where the planner's goal is to minimize the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed before the task is executed. We identify a set of desirable properties that should ideally be satisfied by a crowdsourcing mechanism. In particular, sybil-proofness and collapse-proofness are two complementary properties in our desiderata. We prove that no mechanism can satisfy all the desirable properties simultaneously. This leads us naturally to explore approximate versions of the critical properties. We focus our attention on approximate sybil-proofness and our exploration leads to a parametrized family of payment mechanisms which satisfy collapse-proofness. We characterize the approximate versions of the desirable properties in cost critical and time critical domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid advancements in multi-core processor architectures coupled with low-cost, low-latency, high-bandwidth interconnects have made clusters of multi-core machines a common computing resource. Unfortunately, writing good parallel programs that efficiently utilize all the resources in such a cluster is still a major challenge. Various programming languages have been proposed as a solution to this problem, but are yet to be adopted widely to run performance-critical code mainly due to the relatively immature software framework and the effort involved in re-writing existing code in the new language. In this paper, we motivate and describe our initial study in exploring CUDA as a programming language for a cluster of multi-cores. We develop CUDA-For-Clusters (CFC), a framework that transparently orchestrates execution of CUDA kernels on a cluster of multi-core machines. The well-structured nature of a CUDA kernel, the growing popularity, support and stability of the CUDA software stack collectively make CUDA a good candidate to be considered as a programming language for a cluster. CFC uses a mixture of source-to-source compiler transformations, a work distribution runtime and a light-weight software distributed shared memory to manage parallel executions. Initial results on running several standard CUDA benchmark programs achieve impressive speedups of up to 7.5X on a cluster with 8 nodes, thereby opening up an interesting direction of research for further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We argued in arXiv: 1408.0624 that the quartic scalar field in AdS has features that could be instructive for answering the gravitational stability question of AdS. Indeed, the conserved charges identified there have recently been observed in the full gravity theory as well. In this paper, we continue our investigation of the scalar field in AdS and provide evidence that in the Two-Time Formalism (TTF), even for initial conditions that are far from quasi-periodicity, the energy in the higher modes at late times is exponentially suppressed in the mode number. Based on this and some related observations, we argue that there is no thermalization in the scalar TTF model within time-scales that go as similar to 1/epsilon(2), where epsilon measures the initial amplitude (with only low-lying modes excited). It is tempting to speculate that the result holds also for AdS collapse. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.