929 resultados para Malha Triangular
Resumo:
We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.
Resumo:
During the growth of GaAs nanowires on the {111}B GaAs substrate, truncated triangular GaAs nanowires were commonly observed in the bottom region of nanowires. Through detailed structural analysis by electron microscopy, we have determined the growth mechanism of truncated triangular GaAs nanowires.
Resumo:
We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.
Resumo:
We experimentally investigate a multi-parameter optimization of conditions for generation of triangular pulses in normal dispersion fiber. We find that triangular pulses suitable for all optical processing applications can be generated for a wide range of input pulse chirps but that triangular pulse quality and stability is improved with increased input pulse chirp.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
We determine through numerical modelling the conditions for the generation of triangular-shaped optical pulses in a nonlinear, normally dispersive (ND) fibre and experimentally demonstrate triangular pulse formation in conventional ND fibre.
Resumo:
In this scheme, nonlinearity and dispersion in the NDF lead to various reshaping processes of an initial, conventional pulse according to the chirping value and power level at the input of the fibre. In particular, we have observed that triangular-shaped pulses can be generated for sufficiently high energies and a positive initial chirp parameter. In our experiments, 2.8 ps-FWHM, transform-limited pulses generated from a mode-locked fibre laser source at a repetition rate of 1.25 GHz were pre-chirped by propagating the pulses through different lengths of standard mono-mode fibre. The chirped pulses were then amplified to different power levels before being launched into a 2.3 km section of True Wave fibre (TWF). The corresponding numerically calculated pulse temporal intensity profile and numerical and experimental second-harmonic generation frequency-resolved optical gating (SHG FROG) spectrograms were also derived. In conclusion, we have presented numerical modelling results which show the system design parameters required for the generation of triangular-shaped pulses in a nonlinear NDF, and experimentally demonstrated triangular pulse shaping in conventional NDF.
Resumo:
We propose a novel technique of doubling optical pulses in both frequency and time domains based on a combination of cross-phase modulation induced by a triangular pump pulse in a nonlinear Kerr medium and subsequent propagation in a dispersive medium.
Resumo:
We propose techniques of optical frequency conversion, pulse compression and signal copying based on a combination of cross-phase modulation using triangular pump pulses and subsequent propagation in a dispersive medium.