946 resultados para Machine design.
Resumo:
The first part of this thesis has focused on the construction of a twelve-phase asynchronous machine for More Electric Aircraft (MEA) applications. In fact, the aerospace world has found in electrification the way to improve the efficiency, reliability and maintainability of an aircraft. This idea leads to the aircraft a new management and distribution of electrical services. In this way is possible to remove or to reduce the hydraulic, mechanical and pneumatic systems inside the aircraft. The second part of this dissertation is dedicated on the enhancement of the control range of matrix converters (MCs) operating with non-unity input power factor and, at the same time, on the reduction of the switching power losses. The analysis leads to the determination in closed form of a modulation strategy that features a control range, in terms of output voltage and input power factor, that is greater than that of the traditional strategies under the same operating conditions, and a reduction in the switching power losses.
Resumo:
The wool is entangled at several stages of its processing. In the conventional scouring machines, the prongs or the rakes agitate the wool and lead the fiber entanglement. Several scouring systems have been commercialized in order to reduce the fiber entanglement. In spite of the existing technologies, the conventional scouring machines are widely used in wool processing. In this thesis, a new approach for the harrow type wool transport mechanism has been introduced. The proposed mechanism has been designed based on the motion of the conventional harrow type wool transport mechanism by exploiting new synthesis concepts. The developed structure has been synthesized based on the Hrones and Nelson's "Atlas of four bar linkages". The four bar linkage has been applied for the desired trajectory of the developed wool transport mechanism. The prongs of the developed mechanism immerse the wool into the scouring liquor and gently propel forward toward the end of the machine with approximately straight line motion in a certain length instead of circular or elliptical motion typical of the conventional machines.
Resumo:
In questa tesi viene presentato un bioreattore in grado di mantenere nel tempo condizioni biologiche tali che consentano di massimizzare i cicli di evoluzione molecolare di vettori di clonazione fagici: litico (T7) o lisogeno (M13). Verranno quindi introdtti concetti legati alla Teoria della Quasispecie e alla relazione tra errori di autoreplicazione e pressioni selettive naturali o artificiali su popolazioni di virus: il modello naturale del sistema evolutivo. Tuttavia, mantenere delle popolazioni di virus significa formire loro un substrato dove replicare. Per fare ciò, altri gruppi di ricerca hanno giá sviluppato complessi e costosi prototipi di macchinari per la crescita continua di popolazioni batteriche: i compartimenti dei sistemi evolutivi. Il bioreattore, oggetto di questo lavoro, fa parte del progetto europeo Evoprog: general purpose programmable machine evolution on a chip (Jaramillo’s Lab, University of Warwick) che, utilizzando tecnologie fagiche e regolazioni sintetiche esistenti, sará in grado di produrre funzionalità biocomputazionali di due ordini di grandezza più veloci rispetto alle tecniche convenzionali, riducendo allo stesso tempo i costi complessivi. Il primo prototipo consiste in uno o piú fermentatori, dove viene fatta crescere la cultura batterica in condizioni ottimizzate di coltivazione continua, e in un cellstat, un volume separato, dove avviene solo la replicazione dei virus. Entrambi i volumi sono di pochi millilitri e appropriatamente interconnessi per consentire una sorta di screening continuo delle biomolecole prodotte all’uscita. Nella parte finale verranno presentati i risultati degli esperimenti preliminari, a dimostrazione dell’affidabilità del prototipo costruito e dei protocolli seguiti per la sterilizzazione e l’assemblaggio del bioreattore. Gli esperimenti effettuati dimostrano il successo di due coltivazioni virali continue e una ricombinazione in vivo di batteriofagi litici o lisogeni ingegnerizzati. La tesi si conclude valutando i futuri sviluppi e i limiti del sistema, tenendo in considerazione, in particolare, alcune applicazioni rivolte agli studi di una terapia batteriofagica.
Resumo:
Objective. The purpose of this study was to determine the dose profile of the Cranex Tome radiography unit and compare it with that of the Scanora machine.Study design. The radiation dose delivered by the Cranex Tome radiography unit during the cross-sectional mode was determined. Single tooth gaps in regions 3 (16) and 30 (46) were simulated. Dosimetry was carried out with 2 phantoms, a head and neck phantom and a full-body phantom loaded with 142 thermoluminescent dosimeters (TLD) and 280 TLD, respectively; all locations corresponded to radiosensitive organs or tissues. The recorded local mean organ doses were compared with those measured in another study evaluating the Scanora machine.Results. Generally, dose values from the Cranex Tome radiography unit reached only 50% to 60% of the values measured for the Scanora machine. The effective dose was calculated as 0.061 mSv and 0.04 mSv for tooth regions 3 (16) and 30 (46), respectively. Corresponding values for the Scanora machine were 0.117 mSv and 0.084 mSv.Conclusion. Cross-sectional imaging in the molar region of the upper and the lower jaw can be performed with the Cranex Tome unit, which delivers only approximately half of the dose that the Scanora machine delivers.
Resumo:
Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.
Resumo:
Neuromorphic computing has become an emerging field in wide range of applications. Its challenge lies in developing a brain-inspired architecture that can emulate human brain and can work for real time applications. In this report a flexible neural architecture is presented which consists of 128 X 128 SRAM crossbar memory and 128 spiking neurons. For Neuron, digital integrate and fire model is used. All components are designed in 45nm technology node. The core can be configured for certain Neuron parameters, Axon types and synapses states and are fully digitally implemented. Learning for this architecture is done offline. To train this circuit a well-known algorithm Restricted Boltzmann Machine (RBM) is used and linear classifiers are trained at the output of RBM. Finally, circuit was tested for handwritten digit recognition application. Future prospects for this architecture are also discussed.
Resumo:
Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.
Resumo:
BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.
Resumo:
This work deals with parallel optimization of expensive objective functions which are modelled as sample realizations of Gaussian processes. The study is formalized as a Bayesian optimization problem, or continuous multi-armed bandit problem, where a batch of q > 0 arms is pulled in parallel at each iteration. Several algorithms have been developed for choosing batches by trading off exploitation and exploration. As of today, the maximum Expected Improvement (EI) and Upper Confidence Bound (UCB) selection rules appear as the most prominent approaches for batch selection. Here, we build upon recent work on the multipoint Expected Improvement criterion, for which an analytic expansion relying on Tallis’ formula was recently established. The computational burden of this selection rule being still an issue in application, we derive a closed-form expression for the gradient of the multipoint Expected Improvement, which aims at facilitating its maximization using gradient-based ascent algorithms. Substantial computational savings are shown in application. In addition, our algorithms are tested numerically and compared to state-of-the-art UCB-based batchsequential algorithms. Combining starting designs relying on UCB with gradient-based EI local optimization finally appears as a sound option for batch design in distributed Gaussian Process optimization.
Resumo:
A metal-less RXI collimator has been designed. Unlike to the conventional RXI collimators, whose back surface and central part of the front surface have to be metalized, this collimator does not include any mirrored surface. The back surface is designed as a grooved surface providing two TIR reflections for all rays impinging on it. The main advantage of the presented design is lower manufacturing cost since there is no need for the expensive process of metalization. Also, unlike to the conventional RXI collimators this design performs good colour mixing. The first prototype of V-groove RXI collimator has been made of PMMA by direct cutting using a five axis diamond turning machine. The experimental measurements of the first prototype are presented.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.
Resumo:
The design and development of spoken interaction systems has been a thoroughly studied research scope for the last decades. The aim is to obtain systems with the ability to interact with human agents with a high degree of naturalness and efficiency, allowing them to carry out the actions they desire using speech, as it is the most natural means of communication between humans. To achieve that degree of naturalness, it is not enough to endow systems with the ability to accurately understand the user’s utterances and to properly react to them, even considering the information provided by the user in his or her previous interactions. The system has also to be aware of the evolution of the conditions under which the interaction takes place, in order to act the most coherent way as possible at each moment. Consequently, one of the most important features of the system is that it has to be context-aware. This context awareness of the system can be reflected in the modification of the behaviour of the system taking into account the current situation of the interaction. For instance, the system should decide which action it has to carry out, or the way to perform it, depending on the user that requests it, on the way that the user addresses the system, on the characteristics of the environment in which the interaction takes place, and so on. In other words, the system has to adapt its behaviour to these evolving elements of the interaction. Moreover that adaptation has to be carried out, if possible, in such a way that the user: i) does not perceive that the system has to make any additional effort, or to devote interaction time to perform tasks other than carrying out the requested actions, and ii) does not have to provide the system with any additional information to carry out the adaptation, which could imply a lesser efficiency of the interaction, since users should devote several interactions only to allow the system to become adapted. In the state-of-the-art spoken dialogue systems, researchers have proposed several disparate strategies to adapt the elements of the system to different conditions of the interaction (such as the acoustic characteristics of a specific user’s speech, the actions previously requested, and so on). Nevertheless, to our knowledge there is not any consensus on the procedures to carry out these adaptation. The approaches are to an extent unrelated from one another, in the sense that each one considers different pieces of information, and the treatment of that information is different taking into account the adaptation carried out. In this regard, the main contributions of this Thesis are the following ones: Definition of a contextualization framework. We propose a unified approach that can cover any strategy to adapt the behaviour of a dialogue system to the conditions of the interaction (i.e. the context). In our theoretical definition of the contextualization framework we consider the system’s context as all the sources of variability present at any time of the interaction, either those ones related to the environment in which the interaction takes place, or to the human agent that addresses the system at each moment. Our proposal relies on three aspects that any contextualization approach should fulfill: plasticity (i.e. the system has to be able to modify its behaviour in the most proactive way taking into account the conditions under which the interaction takes place), adaptivity (i.e. the system has also to be able to consider the most appropriate sources of information at each moment, both environmental and user- and dialogue-dependent, to effectively adapt to the conditions aforementioned), and transparency (i.e. the system has to carry out the contextualizaton-related tasks in such a way that the user neither perceives them nor has to do any effort in providing the system with any information that it needs to perform that contextualization). Additionally, we could include a generality aspect to our proposed framework: the main features of the framework should be easy to adopt in any dialogue system, regardless of the solution proposed to manage the dialogue. Once we define the theoretical basis of our contextualization framework, we propose two cases of study on its application in a spoken dialogue system. We focus on two aspects of the interaction: the contextualization of the speech recognition models, and the incorporation of user-specific information into the dialogue flow. One of the modules of a dialogue system that is more prone to be contextualized is the speech recognition system. This module makes use of several models to emit a recognition hypothesis from the user’s speech signal. Generally speaking, a recognition system considers two types of models: an acoustic one (that models each of the phonemes that the recognition system has to consider) and a linguistic one (that models the sequences of words that make sense for the system). In this work we contextualize the language model of the recognition system in such a way that it takes into account the information provided by the user in both his or her current utterance and in the previous ones. These utterances convey information useful to help the system in the recognition of the next utterance. The contextualization approach that we propose consists of a dynamic adaptation of the language model that is used by the recognition system. We carry out this adaptation by means of a linear interpolation between several models. Instead of training the best interpolation weights, we make them dependent on the conditions of the dialogue. In our approach, the system itself will obtain these weights as a function of the reliability of the different elements of information available, such as the semantic concepts extracted from the user’s utterance, the actions that he or she wants to carry out, the information provided in the previous interactions, and so on. One of the aspects more frequently addressed in Human-Computer Interaction research is the inclusion of user specific characteristics into the information structures managed by the system. The idea is to take into account the features that make each user different from the others in order to offer to each particular user different services (or the same service, but in a different way). We could consider this approach as a user-dependent contextualization of the system. In our work we propose the definition of a user model that contains all the information of each user that could be potentially useful to the system at a given moment of the interaction. In particular we will analyze the actions that each user carries out throughout his or her interaction. The objective is to determine which of these actions become the preferences of that user. We represent the specific information of each user as a feature vector. Each of the characteristics that the system will take into account has a confidence score associated. With these elements, we propose a probabilistic definition of a user preference, as the action whose likelihood of being addressed by the user is greater than the one for the rest of actions. To include the user dependent information into the dialogue flow, we modify the information structures on which the dialogue manager relies to retrieve information that could be needed to solve the actions addressed by the user. Usage preferences become another source of contextual information that will be considered by the system towards a more efficient interaction (since the new information source will help to decrease the need of the system to ask users for additional information, thus reducing the number of turns needed to carry out a specific action). To test the benefits of the contextualization framework that we propose, we carry out an evaluation of the two strategies aforementioned. We gather several performance metrics, both objective and subjective, that allow us to compare the improvements of a contextualized system against the baseline one. We will also gather the user’s opinions as regards their perceptions on the behaviour of the system, and its degree of adaptation to the specific features of each interaction. Resumen El diseño y el desarrollo de sistemas de interacción hablada ha sido objeto de profundo estudio durante las pasadas décadas. El propósito es la consecución de sistemas con la capacidad de interactuar con agentes humanos con un alto grado de eficiencia y naturalidad. De esta manera, los usuarios pueden desempeñar las tareas que deseen empleando la voz, que es el medio de comunicación más natural para los humanos. A fin de alcanzar el grado de naturalidad deseado, no basta con dotar a los sistemas de la abilidad de comprender las intervenciones de los usuarios y reaccionar a ellas de manera apropiada (teniendo en consideración, incluso, la información proporcionada en previas interacciones). Adicionalmente, el sistema ha de ser consciente de las condiciones bajo las cuales transcurre la interacción, así como de la evolución de las mismas, de tal manera que pueda actuar de la manera más coherente en cada instante de la interacción. En consecuencia, una de las características primordiales del sistema es que debe ser sensible al contexto. Esta capacidad del sistema de conocer y emplear el contexto de la interacción puede verse reflejada en la modificación de su comportamiento debida a las características actuales de la interacción. Por ejemplo, el sistema debería decidir cuál es la acción más apropiada, o la mejor manera de llevarla a término, dependiendo del usuario que la solicita, del modo en el que lo hace, etcétera. En otras palabras, el sistema ha de adaptar su comportamiento a tales elementos mutables (o dinámicos) de la interacción. Dos características adicionales son requeridas a dicha adaptación: i) el usuario no ha de percibir que el sistema dedica recursos (temporales o computacionales) a realizar tareas distintas a las que aquél le solicita, y ii) el usuario no ha de dedicar esfuerzo alguno a proporcionar al sistema información adicional para llevar a cabo la interacción. Esto último implicaría una menor eficiencia de la interacción, puesto que los usuarios deberían dedicar parte de la misma a proporcionar información al sistema para su adaptación, sin ningún beneficio inmediato. En los sistemas de diálogo hablado propuestos en la literatura, se han propuesto diferentes estrategias para llevar a cabo la adaptación de los elementos del sistema a las diferentes condiciones de la interacción (tales como las características acústicas del habla de un usuario particular, o a las acciones a las que se ha referido con anterioridad). Sin embargo, no existe una estrategia fija para proceder a dicha adaptación, sino que las mismas no suelen guardar una relación entre sí. En este sentido, cada una de ellas tiene en cuenta distintas fuentes de información, la cual es tratada de manera diferente en función de las características de la adaptación buscada. Teniendo en cuenta lo anterior, las contribuciones principales de esta Tesis son las siguientes: Definición de un marco de contextualización. Proponemos un criterio unificador que pueda cubrir cualquier estrategia de adaptación del comportamiento de un sistema de diálogo a las condiciones de la interacción (esto es, el contexto de la misma). En nuestra definición teórica del marco de contextualización consideramos el contexto del sistema como todas aquellas fuentes de variabilidad presentes en cualquier instante de la interacción, ya estén relacionadas con el entorno en el que tiene lugar la interacción, ya dependan del agente humano que se dirige al sistema en cada momento. Nuestra propuesta se basa en tres aspectos que cualquier estrategia de contextualización debería cumplir: plasticidad (es decir, el sistema ha de ser capaz de modificar su comportamiento de la manera más proactiva posible, teniendo en cuenta las condiciones en las que tiene lugar la interacción), adaptabilidad (esto es, el sistema ha de ser capaz de considerar la información oportuna en cada instante, ya dependa del entorno o del usuario, de tal manera que adecúe su comportamiento de manera eficaz a las condiciones mencionadas), y transparencia (que implica que el sistema ha de desarrollar las tareas relacionadas con la contextualización de tal manera que el usuario no perciba la manera en que dichas tareas se llevan a cabo, ni tampoco deba proporcionar al sistema con información adicional alguna). De manera adicional, incluiremos en el marco propuesto el aspecto de la generalidad: las características del marco de contextualización han de ser portables a cualquier sistema de diálogo, con independencia de la solución propuesta en los mismos para gestionar el diálogo. Una vez hemos definido las características de alto nivel de nuestro marco de contextualización, proponemos dos estrategias de aplicación del mismo a un sistema de diálogo hablado. Nos centraremos en dos aspectos de la interacción a adaptar: los modelos empleados en el reconocimiento de habla, y la incorporación de información específica de cada usuario en el flujo de diálogo. Uno de los módulos de un sistema de diálogo más susceptible de ser contextualizado es el sistema de reconocimiento de habla. Este módulo hace uso de varios modelos para generar una hipótesis de reconocimiento a partir de la señal de habla. En general, un sistema de reconocimiento emplea dos tipos de modelos: uno acústico (que modela cada uno de los fonemas considerados por el reconocedor) y uno lingüístico (que modela las secuencias de palabras que tienen sentido desde el punto de vista de la interacción). En este trabajo contextualizamos el modelo lingüístico del reconocedor de habla, de tal manera que tenga en cuenta la información proporcionada por el usuario, tanto en su intervención actual como en las previas. Estas intervenciones contienen información (semántica y/o discursiva) que puede contribuir a un mejor reconocimiento de las subsiguientes intervenciones del usuario. La estrategia de contextualización propuesta consiste en una adaptación dinámica del modelo de lenguaje empleado en el reconocedor de habla. Dicha adaptación se lleva a cabo mediante una interpolación lineal entre diferentes modelos. En lugar de entrenar los mejores pesos de interpolación, proponemos hacer los mismos dependientes de las condiciones actuales de cada diálogo. El propio sistema obtendrá estos pesos como función de la disponibilidad y relevancia de las diferentes fuentes de información disponibles, tales como los conceptos semánticos extraídos a partir de la intervención del usuario, o las acciones que el mismo desea ejecutar. Uno de los aspectos más comúnmente analizados en la investigación de la Interacción Persona-Máquina es la inclusión de las características específicas de cada usuario en las estructuras de información empleadas por el sistema. El objetivo es tener en cuenta los aspectos que diferencian a cada usuario, de tal manera que el sistema pueda ofrecer a cada uno de ellos el servicio más apropiado (o un mismo servicio, pero de la manera más adecuada a cada usuario). Podemos considerar esta estrategia como una contextualización dependiente del usuario. En este trabajo proponemos la definición de un modelo de usuario que contenga toda la información relativa a cada usuario, que pueda ser potencialmente utilizada por el sistema en un momento determinado de la interacción. En particular, analizaremos aquellas acciones que cada usuario decide ejecutar a lo largo de sus diálogos con el sistema. Nuestro objetivo es determinar cuáles de dichas acciones se convierten en las preferencias de cada usuario. La información de cada usuario quedará representada mediante un vector de características, cada una de las cuales tendrá asociado un valor de confianza. Con ambos elementos proponemos una definición probabilística de una preferencia de uso, como aquella acción cuya verosimilitud es mayor que la del resto de acciones solicitadas por el usuario. A fin de incluir la información dependiente de usuario en el flujo de diálogo, llevamos a cabo una modificación de las estructuras de información en las que se apoya el gestor de diálogo para recuperar información necesaria para resolver ciertos diálogos. En dicha modificación las preferencias de cada usuario pasarán a ser una fuente adicional de información contextual, que será tenida en cuenta por el sistema en aras de una interacción más eficiente (puesto que la nueva fuente de información contribuirá a reducir la necesidad del sistema de solicitar al usuario información adicional, dando lugar en consecuencia a una reducción del número de intervenciones necesarias para llevar a cabo una acción determinada). Para determinar los beneficios de las aplicaciones del marco de contextualización propuesto, llevamos a cabo una evaluación de un sistema de diálogo que incluye las estrategias mencionadas. Hemos recogido diversas métricas, tanto objetivas como subjetivas, que nos permiten determinar las mejoras aportadas por un sistema contextualizado en comparación con el sistema sin contextualizar. De igual manera, hemos recogido las opiniones de los participantes en la evaluación acerca de su percepción del comportamiento del sistema, y de su capacidad de adaptación a las condiciones concretas de cada interacción.
Resumo:
It is easy to get frustrated at spoken conversational agents (SCAs), perhaps because they seem to be callous. By and large, the quality of human-computer interaction is affected due to the inability of the SCAs to recognise and adapt to user emotional state. Now with the mass appeal of artificially-mediated communication, there has been an increasing need for SCAs to be socially and emotionally intelligent, that is, to infer and adapt to their human interlocutors’ emotions on the fly, in order to ascertain an affective, empathetic and naturalistic interaction. An enhanced quality of interaction would reduce users’ frustrations and consequently increase their satisfactions. These reasons have motivated the development of SCAs towards including socio-emotional elements, turning them into affective and socially-sensitive interfaces. One barrier to the creation of such interfaces has been the lack of methods for modelling emotions in a task-independent environment. Most emotion models for spoken dialog systems are task-dependent and thus cannot be used “as-is” in different applications. This Thesis focuses on improving this, in which it concerns computational modeling of emotion, personality and their interrelationship for task-independent autonomous SCAs. The generation of emotion is driven by needs, inspired by human’s motivational systems. The work in this Thesis is organised in three stages, each one with its own contribution. The first stage involved defining, integrating and quantifying the psychological-based motivational and emotional models sourced from. Later these were transformed into a computational model by implementing them into software entities. The computational model was then incorporated and put to test with an existing SCA host, a HiFi-control agent. The second stage concerned automatic prediction of affect, which has been the main challenge towards the greater aim of infusing social intelligence into the HiFi agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. In this stage, we attempted to address part of this challenge by considering the roles of user satisfaction ratings and conversational/dialog features as the respective target and predictors in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. The final stage concerned the evaluation of the emotional model through the HiFi agent. A series of user studies with 70 subjects were conducted in a real-time environment, each in a different phase and with its own conditions. All the studies involved the comparisons between the baseline non-modified and the modified agent. The findings have gone some way towards enhancing our understanding of the utility of emotion in spoken dialog systems in several ways; first, an SCA should not express its emotions blindly, albeit positive. Rather, it should adapt its emotions to user states. Second, low performance in an SCA may be compensated by the exploitation of emotion. Third, the expression of emotion through the exploitation of prosody could better improve users’ perceptions of an SCA compared to exploiting emotions through just lexical contents. Taken together, these findings not only support the success of the emotional model, but also provide substantial evidences with respect to the benefits of adding emotion in an SCA, especially in mitigating users’ frustrations and ultimately improving their satisfactions. Resumen Es relativamente fácil experimentar cierta frustración al interaccionar con agentes conversacionales (Spoken Conversational Agents, SCA), a menudo porque parecen ser un poco insensibles. En general, la calidad de la interacción persona-agente se ve en cierto modo afectada por la incapacidad de los SCAs para identificar y adaptarse al estado emocional de sus usuarios. Actualmente, y debido al creciente atractivo e interés de dichos agentes, surge la necesidad de hacer de los SCAs unos seres cada vez más sociales y emocionalmente inteligentes, es decir, con capacidad para inferir y adaptarse a las emociones de sus interlocutores humanos sobre la marcha, de modo que la interacción resulte más afectiva, empática y, en definitiva, natural. Una interacción mejorada en este sentido permitiría reducir la posible frustración de los usuarios y, en consecuencia, mejorar el nivel de satisfacción alcanzado por los mismos. Estos argumentos justifican y motivan el desarrollo de nuevos SCAs con capacidades socio-emocionales, dotados de interfaces afectivas y socialmente sensibles. Una de las barreras para la creación de tales interfaces ha sido la falta de métodos de modelado de emociones en entornos independientes de tarea. La mayoría de los modelos emocionales empleados por los sistemas de diálogo hablado actuales son dependientes de tarea y, por tanto, no pueden utilizarse "tal cual" en diferentes dominios o aplicaciones. Esta tesis se centra precisamente en la mejora de este aspecto, la definición de modelos computacionales de las emociones, la personalidad y su interrelación para SCAs autónomos e independientes de tarea. Inspirada en los sistemas motivacionales humanos en el ámbito de la psicología, la tesis propone un modelo de generación/producción de la emoción basado en necesidades. El trabajo realizado en la presente tesis está organizado en tres etapas diferenciadas, cada una con su propia contribución. La primera etapa incluyó la definición, integración y cuantificación de los modelos motivacionales de partida y de los modelos emocionales derivados a partir de éstos. Posteriormente, dichos modelos emocionales fueron plasmados en un modelo computacional mediante su implementación software. Este modelo computacional fue incorporado y probado en un SCA anfitrión ya existente, un agente con capacidad para controlar un equipo HiFi, de alta fidelidad. La segunda etapa se orientó hacia el reconocimiento automático de la emoción, aspecto que ha constituido el principal desafío en relación al objetivo mayor de infundir inteligencia social en el agente HiFi. En los últimos años, los estudios sobre reconocimiento de emociones a partir de la voz han pasado de emplear datos actuados a usar datos reales en los que la presencia u observación de emociones se produce de una manera mucho más sutil. El reconocimiento de emociones bajo estas condiciones resulta mucho más complicado y esta dificultad se pone de manifiesto en tareas tales como el etiquetado y el aprendizaje automático. En esta etapa, se abordó el problema del reconocimiento de las emociones del usuario a partir de características o métricas derivadas del propio diálogo usuario-agente. Gracias a dichas métricas, empleadas como predictores o indicadores del grado o nivel de satisfacción alcanzado por el usuario, fue posible discriminar entre satisfacción y frustración, las dos emociones prevalentes durante la interacción usuario-agente. La etapa final corresponde fundamentalmente a la evaluación del modelo emocional por medio del agente Hifi. Con ese propósito se llevó a cabo una serie de estudios con usuarios reales, 70 sujetos, interaccionando con diferentes versiones del agente Hifi en tiempo real, cada uno en una fase diferente y con sus propias características o capacidades emocionales. En particular, todos los estudios realizados han profundizado en la comparación entre una versión de referencia del agente no dotada de ningún comportamiento o característica emocional, y una versión del agente modificada convenientemente con el modelo emocional propuesto. Los resultados obtenidos nos han permitido comprender y valorar mejor la utilidad de las emociones en los sistemas de diálogo hablado. Dicha utilidad depende de varios aspectos. En primer lugar, un SCA no debe expresar sus emociones a ciegas o arbitrariamente, incluso aunque éstas sean positivas. Más bien, debe adaptar sus emociones a los diferentes estados de los usuarios. En segundo lugar, un funcionamiento relativamente pobre por parte de un SCA podría compensarse, en cierto modo, dotando al SCA de comportamiento y capacidades emocionales. En tercer lugar, aprovechar la prosodia como vehículo para expresar las emociones, de manera complementaria al empleo de mensajes con un contenido emocional específico tanto desde el punto de vista léxico como semántico, ayuda a mejorar la percepción por parte de los usuarios de un SCA. Tomados en conjunto, los resultados alcanzados no sólo confirman el éxito del modelo emocional, sino xv que constituyen además una evidencia decisiva con respecto a los beneficios de incorporar emociones en un SCA, especialmente en cuanto a reducir el nivel de frustración de los usuarios y, en última instancia, mejorar su satisfacción.