899 resultados para Load-cycle analysis
Resumo:
The purpose of this paper is to present exergy charts for carbon dioxide (CO2) based on the new fundamental equation of state and the results of a thermodynamic analysis of conventional and trans-critical vapour compression refrigeration cycles using the data thereof. The calculation scheme is anchored on the Mathematica platform. There exist upper and lower bounds for the high cycle pressure for a given set of evaporating and pre-throttling temperatures. The maximum possible exergetic efficiency for each case was determined. Empirical correlations for exergetic efficiency and COP, valid in the range of temperatures studied here, are obtained. The exergy losses have been quantified. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.
Resumo:
The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
Recent studies on small-scale power generation with the organic Rankine cycle suggest superior performance of positive displacement type of expanders compared to turbines. Scroll expanders in particular achieve high isentropic efficiencies due to lower leakage and frictional losses. Performance of scroll machines may be enhanced by the use of non-circular involute curves in place of the circular involutes resulting non-uniform wall thickness. In this paper, a detailed moment analysis is performed for such an expander having volumetric expansion ratio of 5 using thermodynamic models proposed earlier by one of the present authors. The working fluid considered in the power cycle is R-245fa with scroll inlet temperature of 125 degrees C for a gross power output of similar to 3.5 kW. The model developed in this paper is verified with an air scroll compressor available in the literature and then applied to an expander Prediction of small variation of moment with scroll motion recommends use of scroll expander without a flywheel over other positive displacement type of expanders, e.g. reciprocating, where a flywheel is an essential component.
Resumo:
A theoretical description of shear instability is presented in a system of equations. It is shown that two types of instability may exist. One of them is dominated by pore pressure softening while the other by strain softening. A criterion combining pore pressure softening, strain hardening, and volume strain coefficient is obtained and practical implications are discussed.
Resumo:
In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.
Resumo:
Firstly, the main factors are obtained by use of dimensionless analysis. Secondly, the time scaling factors in centrifuge modeling of bucket foundations under dynamic load are analyzed based on dimensionless analysis and control- ling equation. A simplified method for dealing with the conflict of scaling factors of the inertial and the percolation in sand foundation is presented. The presented method is that the material for experiments is not changed while the effects are modified by perturbation method. Thirdly, the characteristic time of liquefaction state and the characteristic scale of affected zone are analyzed.
Resumo:
We consider the radially symmetric nonlinear von Kármán plate equations for circular or annular plates in the limit of small thickness. The loads on the plate consist of a radially symmetric pressure load and a uniform edge load. The dependence of the steady states on the edge load and thickness is studied using asymptotics as well as numerical calculations. The von Kármán plate equations are a singular perturbation of the Fӧppl membrane equation in the asymptotic limit of small thickness. We study the role of compressive membrane solutions in the small thickness asymptotic behavior of the plate solutions.
We give evidence for the existence of a singular compressive solution for the circular membrane and show by a singular perturbation expansion that the nonsingular compressive solution approach this singular solution as the radial stress at the center of the plate vanishes. In this limit, an infinite number of folds occur with respect to the edge load. Similar behavior is observed for the annular membrane with zero edge load at the inner radius in the limit as the circumferential stress vanishes.
We develop multiscale expansions, which are asymptotic to members of this family for plates with edges that are elastically supported against rotation. At some thicknesses this approximation breaks down and a boundary layer appears at the center of the plate. In the limit of small normal load, the points of breakdown approach the bifurcation points corresponding to buckling of the nondeflected state. A uniform asymptotic expansion for small thickness combining the boundary layer with a multiscale approximation of the outer solution is developed for this case. These approximations complement the well known boundary layer expansions based on tensile membrane solutions in describing the bending and stretching of thin plates. The approximation becomes inconsistent as the clamped state is approached by increasing the resistance against rotation at the edge. We prove that such an expansion for the clamped circular plate cannot exist unless the pressure load is self-equilibrating.