859 resultados para Large-scale gradient
Resumo:
A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 x 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 x 2 switch showed very low power consumption of 140 mW and a very high speed of 8 +/- 1 mus. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 +/- 0.3 dB at 1.55 mum.
Resumo:
We report on the strong blue-violet photoluminescence (PL) at room temperature from the large-scale highly aligned boron carbonitride (BCN) nanofibers synthesized by bias-assisted hot filament chemical vapor deposition. The photoluminescence peak wavelength shifts in the range of 470-390 nm by changing the chemical composition of the BCN nanofibers, which shows an interesting blue and violet-light-emitting material with adjustable optical properties. The mechanism for the shift of the PL peaks at room temperature is also discussed. (C) 2000 American Institute of Physics. [S0003-6951(00)04427-2].
Resumo:
Large-scale uniform Ag microtubes with high length diameter ratios have been first successfully synthesized by a facile approach, using low-cost super fine glass fibers as templates. The samples were characterized by SEM and XRD. The investigations showed that calcining or adding of PEG-1000 and alcohol could greatly improve the mechanical strength of the sample. Especially the products exhibited favorable catalytic properties during the degradation of Rhodamine B by NaBH4. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A lithography-independent and wafer scale method to fabricate a metal nanogap structure is demon-strated. Polysilicon was first dry etched using photoresist (PR) as the etch mask patterned by photolithography.Then, by depositing conformal SiO_2 on the polysilicon pattern, etching back SiO_2 anisotropically in the perpendic-ular direction and removing the polysilicon with KOH, a sacrificial SiO_2 spacer was obtained. Finally, after metal evaporation and lifting-off of the SiO_2 spacer, an 82 nm metal-gap structure was achieved. The size of the nanogap is not determined by the photolithography, but by the thickness of the SiO_2. The method reported in this paper is compatible with modern semiconductor technology and can be used in mass production.
Resumo:
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors ( 1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high-performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteorological environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.
Resumo:
The vertical growth of seagrasses in response to burial by migration of bedforms is combined with dating techniques to provide precise and rapid estimates of the migration speed of subaqueous dunes over seagrass patches. Two methods to estimate the time interval between the passage of successive dunes and the motion of single dunes through seagrass patches are described. The second method is more precise. The application of these methods to vegetated (Cymodocea nodosa) subaqueous dunes in the Alfacs Bay (NW Mediterranean) showed that the dunes traveled at an average speed of $13.0 \pm 0.6 m yr^-1$ and demonstrated that the methods can resolve migration speeds from 0.15 to $980 m yr^-1$ with this particular seagrass species. In areas vegetated with different seagrass species, bedform migration can be estimated over different time scales. The strong coupling between seagrass and sediment dynamics resembles the coupling of vegetation and land dunes.
Resumo:
Land-cover changes in China are being powered by demand for food for its growing population and by the nation's transition from a largely rural society to one in which more than half of its people are expected to live in cities within two decades. Here we use an analysis of remotely sensed data gathered between 1990 and 2000, to map the magnitude and pattern of changes such as the conversion of grasslands and forests to croplands and the loss of croplands to urban expansion. With high-resolution ( 30 m) imagery from Landsat TM for the entire country, we show that between 1990 and 2000 the cropland area increased by 2.99 million hectares and urban areas increased by 0.82 million hectares. In northern China, large areas of woodlands, grasslands and wetlands were converted to croplands, while in southern China large areas of croplands were converted to urban areas. The land-cover products presented here give the Chinese government and international community, for the first time, an unambiguous understanding of the degree to which the nation's landscape is being altered. Documentation of these changes in a reliable and spatially explicit way forms the foundation for management of China's environment over the coming decades.
Resumo:
Hydrogen sulfide (H2S) production patterns and the influence of oxygen (O-2) concentration were studied based on a well operated composting plant. A real-time, online multi-gas detection system was applied to monitor the concentrations of H2S and O-2 in the pile during composting. The results indicate that H2S was mainly produced during the early stage of composting, especially during the first 40 h. Lack of available O-2 was the main reason for H2S production. Maintaining the O-2 concentration higher than 14% in the pile could reduce H2S production. This study suggests that shortening the interval between aeration or aerating continuously to maintain a high O-2 concentration in the pile was an effective strategy for restraining H2S production in sewage sludge composting. (C) 2010 Elsevier Ltd. All rights reserved.