984 resultados para Large isoform of rubisco activase
Resumo:
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre-scale bars vary within a multi-kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre-scale bars from the Rio Parana, Argentina. The investigated bars are located between 30km upstream and 540km downstream of the Rio Parana - Rio Paraguay confluence, where a significant volume of fine-grained suspended sediment is introduced into the network. Bar-scale cross-stratified sets, with lengths and widths up to 600m and thicknesses up to 12m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar-scale sets are found on top of finer-grained ripple-laminated bar-trough deposits. Bar-scale sets make up as much as 58% of the volume of the deposits in small, incipient mid-channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Rio Parana is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small-scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large-scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Rio Paraguay. Relative to other controls on downstream fining, the tributary input of fine-grained suspended material from the Rio Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5m of mid-channel bars shows: (i) an increase in the abundance and thickness (up to metre-scale) of laterally extensive (hundreds of metres) fine-grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar-trough deposits and a corresponding decrease in bar-scale cross-strata (<10%). The thalweg deposits of the Rio Parana are composed of dune sets, even directly downstream from the Rio Paraguay where the upper channel deposits are dominantly fine-grained. Thus, the change in sedimentary facies due to a tributary point-source of fine-grained sediment is primarily expressed in the composition of the upper bar deposits.
Resumo:
Wheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO2] conditions (700 versus 370 μmol mol−1) on growth, photosynthetic performance, and C management during the post-anthesis period. The aim was to test whether a restricted capacity of sink organs to utilize photosynthates drives a loss of photosynthetic capacity in elevated CO2. The ambient 13C/12C isotopic composition (δ13C) of air CO2 was changed from-10.2 in ambient [CO2] to-23.6 under elevated [CO2] between the 7th and the 14th days after anthesis in order to study C assimilation and partitioning between leaves and ears. Elevated [CO2] had no significant effect on biomass production and grain filling, and caused an accumulation of C compounds in leaves. This was accompanied by up-regulation of phosphoglycerate mutase and ATP synthase protein content, together with down-regulation of adenosine diphosphate glucose pyrophosphatase protein. Growth in elevated [CO2] negatively affected Rubisco and Rubisco activase protein content and induced photosynthetic down-regulation. CO2 enrichment caused a specific decrease in Rubisco content, together with decreases in the amino acid and total N content of leaves. The C labelling revealed that in flag leaves, part of the C fixed during grain filling was stored as starch and structural C compounds whereas the rest of the labelled C (mainly in the form of soluble sugars) was completely respired 48 h after the end of labelling. Although labelled C was not detected in the δ13C of ear total organic matter and respired CO2, soluble sugar δ13C revealed that a small amount of labelled C reached the ear. The 12CO2 labelling suggests that during the beginning of post-anthesis the ear did not contribute towards overcoming flag leaf carbohydrate accumulation, and this had a consequent effect on protein expression and photosynthetic acclimation.
Resumo:
Artificial reefs have barely been used in Neotropical reservoirs (about five studies in three reservoirs), despite their potential as a fishery management tool to create new habitats and also to understand fish ecology. We experimentally assessed how reef material (ceramic, concrete, and PVC) and time modulated fish colonization of artificial reefs deployed in Itaipu Reservoir, a large reservoir of the mainstem Parana´ River, Brazil. Fish richness, abundance, and biomass were significantly greater in the reef treatments than at control sites. Among the experimental reefs, ceramic followed by the concrete treatments were the materials most effectively colonized, harboring the majority of the 13 fish species recorded. Although dependent on material type, many of the regularities of ecological successions were also observed in the artificial reefs, including decelerating increases in species richness, abundance, mean individual size, and species loss rates with time and decelerating decreases of species gain and turnover rates. Species composition also varied with material type and time, together with suites of life history traits: more equilibrium species (i.e., fishes of intermediate size that often exhibit parental care and produce fewer but larger offspring) of the Winemiller-Rose model of fish life histories prevailed in later successional stages. Overall, our study suggests that experimental reefs are a promising tool to understand ecological succession of fish assemblages, particularly in tropical ecosystems given their high species richness and low seasonality
Resumo:
OBJECTIVE: to verify the effectiveness of the rubber elastic band in the treatment of large wounds of the body wall of rabbits by means of traction of its edges. METHODS: we studied 30 New Zealand rabbits, divided into three groups (n=10): Group 1- healing by secondary intention; Group 2- removal and eutopic repositioning of skin as full thickness skin graft; Group 3- Approximation of wound edges with elastic rubber band. In all animals, we removed a segment of the back skin and subcutaneous tissue down to the fascia, in accordance with an acrylic mold of 8cm long by 12cm wide. All animals were observed for 21 days. RESULTS: two animals of groups 1 and 2 had wound abscess. In Group 2, there was partial or total graft loss in 90% of animals. The complete closure of the wounds was observed in four animals of Group 1, six of Group 2 and eight of Group 3. There was no difference between the scar resistance values of groups 2 and 3, which were higher than those in Group 1. The scars of the three groups were characterized by the presence of mature connective tissue mixed with blood vessels and inflammatory infiltration, predominantly polymorphonuclear. CONCLUSION: the tensile strength of the wound edges with rubber elastic band is as efficient as the skin graft to treat rabbits' large body wounds.
Resumo:
Micromirror arrays are a very strong candidate for future energy saving applications. Within this work, the fabrication process for these micromirror arrays has been optimized and some steps for the large area fabrication of micromirror modules were performed. At first the surface roughness of the insulation layer of silicon dioxide (SiO2) was investigated. This SiO2 thin layer was deposited on three different type of substrates i.e. silicon, glass and Polyethylene Naphthalate (PEN) substrates. The deposition techniques which has been used are Plasma Enhanced Chemical Vapor Deposition (PECVD), Physical Vapor Deposition (PVD) and Ion Beam Sputter Deposition (IBSD). The thickness of the SiO2 thin layer was kept constant at 150nm for each deposition process. The surface roughness was measured by Stylus Profilometry and Atomic Force Microscopy (AFM). It was found that the layer which was deposited by IBSD has got the minimum surface roughness value and the layer which was deposited by PECVD process has the highest surface roughness value. During the same investigation, the substrate temperature of PECVD was varied from 80° C to 300° C with the step size of 40° C and it was found that the surface roughness keeps on increasing as the substrate holder temperature increases in the PECVD process. A new insulation layer system was proposed to minimize the dielectric breakdown effect in insulation layer for micromirror arrays. The conventional bilayer system was replaced by five layer system but the total thickness of insulation layer remains the same. It was found that during the actuation of micromirror arrays structure, the dielectric breakdown effect was reduced considerably as compared to the bilayer system. In the second step the fabrication process of the micromirror arrays was successfully adapted and transferred from glass substrates to the flexible PEN substrates by optimizing the conventional process recipe. In the last section, a large module of micromirror arrays was fabricated by electrically interconnecting four 10cm×10cm micromirror modules on a glass pane having dimensions of 21cm×21cm.
Resumo:
Wilson’s Warbler (Cardellina pusilla; WIWA) has been declining for several decades, possibly because of habitat loss. We compared occupancy of territorial males in two habitat types of Québec’s boreal forest, alder (Alnus spp.) scrubland and recent clear-cuts. Singing males occurred in clusters, their occupancy was similar in both habitats, but increased with the amount of alder or clear-cut within 400 m of point-count stations. A despotic distribution of males between habitats appeared unlikely, because there were no differences in morphology between males captured in clear-cuts vs. alder. Those results contrast with the prevailing view, mostly based on western populations, that WIWA are wetland or riparian specialists, and provide the first evidence for a preference for large tracts of habitat in this species. Clear-cuts in the boreal forest may benefit WIWA by supplying alternative nesting habitat. However, the role of clear-cuts as source or sink habitats needs to be addressed with data on reproduction.
Resumo:
The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the "strength of the overturning circulation" is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere - ocean - sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors' model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project's reconstruction of glacial sea surface temperature and sea ice extent.
Resumo:
We describe a novel mechanism that can significantly lower the amplitude of the climatic response to certain large volcanic eruptions and examine its impact with a coupled ocean-atmosphere climate model. If sufficiently large amounts of water vapour enter the stratosphere, a climatically significant amount of water vapour can be left over in the lower stratosphere after the eruption, even after sulphate aerosol formation. This excess stratospheric humidity warms the tropospheric climate, and acts to balance the climatic cooling induced by the volcanic aerosol, especially because the humidity anomaly lasts for a period that is longer than the residence time of aerosol in the stratosphere. In particular, northern hemisphere high latitude cooling is reduced in magnitude. We discuss this mechanism in the context of the discrepancy between the observed and modelled cooling following the Krakatau eruption in 1883. We hypothesize that moist coignimbrite plumes caused by pyroclastic flows travelling over ocean rather than land, resulting from an eruption close enough to the ocean, might provide the additional source of stratospheric water vapour.
Resumo:
Resolving the relationships between Metazoa and other eukaryotic groups as well as between metazoan phyla is central to the understanding of the origin and evolution of animals. The current view is based on limited data sets, either a single gene with many species (e.g., ribosomal RNA) or many genes but with only a few species. Because a reliable phylogenetic inference simultaneously requires numerous genes and numerous species, we assembled a very large data set containing 129 orthologous proteins (similar to30,000 aligned amino acid positions) for 36 eukaryotic species. Included in the alignments are data from the choanoflagellate Monosiga ovata, obtained through the sequencing of about 1,000 cDNAs. We provide conclusive support for choanoflagellates as the closest relative of animals and for fungi as the second closest. The monophyly of Plantae and chromalveolates was recovered but without strong statistical support. Within animals, in contrast to the monophyly of Coelomata observed in several recent large-scale analyses, we recovered a paraphyletic Coelamata, with nematodes and platyhelminths nested within. To include a diverse sample of organisms, data from EST projects were used for several species, resulting in a large amount of missing data in our alignment (about 25%). By using different approaches, we verify that the inferred phylogeny is not sensitive to these missing data. Therefore, this large data set provides a reliable phylogenetic framework for studying eukaryotic and animal evolution and will be easily extendable when large amounts of sequence information become available from a broader taxonomic range.
Resumo:
Three large deformation rheological tests, the Kieffer dough extensibility system, the D/R dough inflation system and the 2 g mixograph test, were carried out on doughs made from a large number of winter wheat lines and cultivars grown in Poland. These lines and cultivars represented a broad spread in baking performance in order to assess their suitability as predictors of baking volume. The parameters most closely associated with baking volume were strain hardening index, bubble failure strain, and mixograph bandwidth at 10min. Simple correlations with baking volume indicate that bubble failure strain and strain hardening index give the highest correlations, whilst the use of best subsets regression, which selects the best combination of parameters, gave increased correlations with R-2 = 0.865 for dough inflation parameters, R-2 = 0. 842 for Kieffer parameters and R-2 = 0.760 for mixograph parameters. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Although current research indicates that increasing the number of options has negative effects on the cognitive ability of consumers, little understanding has been given to the consequences on producers and their strategic behavior. This article tests whether a large portfolio of products is beneficial to producers by observing UK consumer response to price promotions. The article shows that discounts induce mainly segment switching (74% of the total impact), with a limited effect on stockpiling (26%) and no impact on purchase incidence. Consequently, consumers prefer to “follow the discount” rather than purchase multiple units of the same wine. This result seems to explain the current structure of the market, and suggests that discounts may conflict with segment loyalty, a situation that disfavors producers, particularly in very populated segments. Results also casts doubts on the economic sustainability of competition based on an intense product differentiation in the wine sector.
Resumo:
The occurrence of mid-latitude windstorms is related to strong socio-economic effects. For detailed and reliable regional impact studies, large datasets of high-resolution wind fields are required. In this study, a statistical downscaling approach in combination with dynamical downscaling is introduced to derive storm related gust speeds on a high-resolution grid over Europe. Multiple linear regression models are trained using reanalysis data and wind gusts from regional climate model simulations for a sample of 100 top ranking windstorm events. The method is computationally inexpensive and reproduces individual windstorm footprints adequately. Compared to observations, the results for Germany are at least as good as pure dynamical downscaling. This new tool can be easily applied to large ensembles of general circulation model simulations and thus contribute to a better understanding of the regional impact of windstorms based on decadal and climate change projections.
Resumo:
Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.
Resumo:
Haptic devices tend to be kept small as it is easier to achieve a large change of stiffness with a low associated apparent mass. If large movements are required there is a usually a reduction in the quality of the haptic sensations which can be displayed. The typical measure of haptic device performance is impedance-width (z-width) but this does not account for actuator saturation, usable workspace or the ability to do rapid movements. This paper presents the analysis and evaluation of a haptic device design, utilizing a variant of redundant kinematics, sometimes referred to as a macro-micro configuration, intended to allow large and fast movements without loss of impedance-width. A brief mathematical analysis of the design constraints is given and a prototype system is described where the effects of different elements of the control scheme can be examined to better understand the potential benefits and trade-offs in the design. Finally, the performance of the system is evaluated using a Fitts’ Law test and found to compare favourably with similar evaluations of smaller workspace devices.
Resumo:
We report an analysis of the accessibility between different locations in big cities, which is illustrated with respect to London and Paris. The effects of the respective underground systems in facilitating more uniform access to diverse places are also quantified and investigated. It is shown that London and Paris have markedly different patterns of accessibility, as a consequence of the number of bridges and large parks of London, and that in both cases the respective underground systems imply in general, thought in distinct manners, an increase of accessibility. Copyright (C) EPLA, 2010