218 resultados para LabVIEW


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the achievements and scientific work conducted using a previously designed and fabricated 64 x 64-pixel ion camera with the use of a 0.35 μm CMOS technology. We used an array of Ion Sensitive Field Effect Transistors (ISFETs) to monitor and measure chemical and biochemical reactions in real time. The area of our observation was a 4.2 x 4.3 mm silicon chip while the actual ISFET array covered an area of 715.8 x 715.8 μm consisting of 4096 ISFET pixels in total with a 1 μm separation space among them. The ion sensitive layer, the locus where all reactions took place was a silicon nitride layer, the final top layer of the austriamicrosystems 0.35 μm CMOS technology used. Our final measurements presented an average sensitivity of 30 mV/pH. With the addition of extra layers we were able to monitor a 65 mV voltage difference during our experiments with glucose and hexokinase, whereas a difference of 85 mV was detected for a similar glucose reaction mentioned in literature, and a 55 mV voltage difference while performing photosynthesis experiments with a biofilm made from cyanobacteria, whereas a voltage difference of 33.7 mV was detected as presented in literature for a similar cyanobacterial species using voltamemtric methods for detection. To monitor our experiments PXIe-6358 measurement cards were used and measurements were controlled by LabVIEW software. The chip was packaged and encapsulated using a PGA-100 chip carrier and a two-component commercial epoxy. Printed circuit board (PCB) has also been previously designed to provide interface between the chip and the measurement cards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spasticity is a common disorder in people who have upper motor neuron injury. The involvement may occur at different levels. The Modified Ashworth Scale (MAS) is the most used method to measure involvement levels. But it corresponds to a subjective evaluation. Mechanomyography (MMG) is an objective technique that quantifies the muscle vibration during the contraction and stretching events. So, it may assess the level of spasticity accurately. This study aimed to investigate the correlation between spasticity levels determined by MAS with MMG signal in spastic and not spastic muscles. In the experimental protocol, we evaluated 34 members of 22 volunteers, of both genders, with a mean age of 39.91 ± 13.77 years. We evaluated the levels of spasticity by MAS in flexor and extensor muscle groups of the knee and/or elbow, where one muscle group was the agonist and one antagonist. Simultaneously the assessment by the MAS, caught up the MMG signals. We used a custom MMG equipment to register and record the signals, configured in LabView platform. Using the MatLab computer program, it was processed the MMG signals in the time domain (median energy) and spectral domain (median frequency) for the three motion axes: X (transversal), Y (longitudinal) and Z (perpendicular). For bandwidth delimitation, we used a 3rd order Butterworth filter, acting in the range of 5-50 Hz. Statistical tests as Spearman's correlation coefficient, Kruskal-Wallis test and linear correlation test were applied. As results in the time domain, the Kruskal-Wallis test showed differences in median energy (MMGME) between MAS groups. The linear correlation test showed high linear correlation between MAS and MMGME for the agonist muscle as well as for the antagonist group. The largest linear correlation occurred between the MAS and MMG ME for the Z axis of the agonist muscle group (R2 = 0.9557) and the lowest correlation occurred in the X axis, for the antagonist muscle group (R2 = 0.8862). The Spearman correlation test also confirmed high correlation for all axes in the time domain analysis. In the spectral domain, the analysis showed an increase in the median frequency (MMGMF) in MAS’ greater levels. The highest correlation coefficient between MAS and MMGMF signal occurred in the Z axis for the agonist muscle group (R2 = 0.4883), and the lowest value occurred on the Y axis for the antagonist group (R2 = 0.1657). By means of the Spearman correlation test, the highest correlation occurred between the Y axis of the agonist group (0.6951; p <0.001) and the lowest value on the X axis of the antagonist group (0.3592; p <0.001). We conclude that there was a significantly high correlation between the MMGME and MAS in both muscle groups. Also between MMG and MAS occurred a significant correlation, however moderate for the agonist group, and low for the antagonist group. So, the MMGME proved to be more an appropriate descriptor to correlate with the degree of spasticity defined by the MAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lo scopo del presente lavoro è la realizzazione e l'ottimizzazione di un software che, tramite l'utilizzo di un controllo automatico Proporzionale-Integrativo-Derivativo: PID, gestisca la temperatura di un fornetto in camera a vuoto. È necessario che il sistema sia in grado di eseguire rampe regolari di temperatura di diversa pendenza scelta dall'utente, in modo che possa essere utilizzato in futuro per esperimenti di Desorbimento Termico da parte di vari materiali. La tesi è così suddivisa, nel primo capitolo sono illustrati i concetti teorici di base utilizzati nello sviluppo dei controlli automatici. Nel secondo capitolo è descritta la parte hardware: sono mostrate le diverse sezioni che compongono il fornetto e la camera a vuoto, è inoltre illustrato il cablaggio che permette l'interfaccia del forno alla scheda Arduino ed al software LabVIEW. La terza sezione è dedicata agli studi svolti per la realizzazione del sistema di controllo PID e per la sua ottimizzazione. Il quarto capitolo è invece dedicato alla descrizione del software creato per la gestione del fornetto. Nel quinto capitolo sono infine mostrati i metodi utilizzati per il calcolo delle costanti operative del PID ed i risultati sperimentali ottenuti.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims to present the ORC technology, its advantages and related problems. In particular, it provides an analysis of ORC waste heat recovery system in different and innovative scenarios, focusing on cases from the biggest to the lowest scale. Both industrial and residential ORC applications are considered. In both applications, the installation of a subcritical and recuperated ORC system is examined. Moreover, heat recovery is considered in absence of an intermediate heat transfer circuit. This solution allow to improve the recovery efficiency, but requiring safety precautions. Possible integrations of ORC systems with renewable sources are also presented and investigated to improve the non-programmable source exploitation. In particular, the offshore oil and gas sector has been selected as a promising industrial large-scale ORC application. From the design of ORC systems coupled with Gas Turbines (GTs) as topper systems, the dynamic behavior of the GT+ORC innovative combined cycles has been analyzed by developing a dynamic model of all the considered components. The dynamic behavior is caused by integration with a wind farm. The electric and thermal aspects have been examined to identify the advantages related to the waste heat recovery system installation. Moreover, an experimental test rig has been realized to test the performance of a micro-scale ORC prototype. The prototype recovers heat from a low temperature water stream, available for instance in industrial or residential waste heat. In the test bench, various sensors have been installed, an acquisitions system developed in Labview environment to completely analyze the ORC behavior. Data collected in real time and corresponding to the system dynamic behavior have been used to evaluate the system performance based on selected indexes. Moreover, various operational steady-state conditions are identified and operation maps are realized for a completely characterization of the system and to detect the optimal operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scope of this study is to design an automatic control system and create an automatic x-wire calibrator for a facility named Plane Air Tunnel; whose exit creates planar jet flow. The controlling power state as well as automatic speed adjustment of the inverter has been achieved. Thus, the wind tunnel can be run with respect to any desired speed and the x-wire can automatically be calibrated at that speed. To achieve that, VI programming using the LabView environment was learned, to acquire the pressure and temperature, and to calculate the velocity based on the acquisition data thanks to a pitot-static tube. Furthermore, communication with the inverter to give the commands for power on/off and speed control was also done using the LabView VI coding environment. The connection of the computer to the inverter was achieved by the proper cabling using DAQmx Analog/Digital (A/D) input/output (I/O). Moreover, the pressure profile along the streamwise direction of the plane air tunnel was studied. Pressure tappings and a multichannel pressure scanner were used to acquire the pressure values at different locations. Thanks to that, the aerodynamic efficiency of the contraction ratio was observed, and the pressure behavior was related to the velocity at the exit section. Furthermore, the control of the speed was accomplished by implementing a closed-loop PI controller on the LabView environment with and without using a pitot-static tube thanks to the pressure behavior information. The responses of the two controllers were analyzed and commented on by giving suggestions. In addition, hot wire experiments were performed to calibrate automatically and investigate the velocity profile of a turbulent planar jet. To be able to analyze the results, the physics of turbulent planar jet flow was studied. The fundamental terms, the methods used in the derivation of the equations, velocity profile, shear stress behavior, and the effect of vorticity were reviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From 2010, the Proton Radius has become one of the most interest value to determine. The first proof of not complete understanding of its internal structure was the measurement of the Lamb Shift using the muonic hydrogen, leading to a value 7σ lower. A new road so was open and the Proton Radius Puzzle epoch begun. FAMU Experiment is a project that tries to give an answer to this Puzzle implementing high precision experimental apparatus. The work of this thesis is based on the study, construction and first characterization of a new detection system. Thanks to the previous experiments and simulations, this apparatus is composed by 17 detectors positioned on a semicircular crown with the related electronic circuit. The detectors' characterization is based on the use of a LabView program controlling a digital potentiometer and on other two analog potentiometers, all three used to set the amplitude of each detector to a predefined value, around 1.2 V, set on the oscilloscope by which is possible to observe the signal. This is the requirement in order to have, in the final measurement, a single high peak given by the sum of all the signals coming from the detectors. Each signal has been acquired for almost half of an hour, but the entire circuit has been maintained active for more time to observe its capacity to work for longer periods. The principal results of this thesis are given by the spectra of 12 detectors and the corresponding values of Voltages, FWHM and Resolution. The outcomes of the acquisitions show also another expected behavior: the strong dependence of the detectors from the temperature, demonstrating that an its change causes fluctuations in the signal. In turn, these fluctuations will affect the spectrum, resulting in a shifting of the curve and a lower Resolution. On the other hand, a measurement performed in stable conditions will lead to accordance between the nominal and experimental measurements, as for the detectors 10, 11 and 12 of our system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis work aims to produce and test multilayer electrodes for their use as photocathode in a PEC device. The electrode developed is based on CIGS, a I-III-VI2 semiconductor material composed of copper (Cu), indium (In), Gallium (Ga) and selenium (Se). It has a bandgap in the range of 1.0-2.4 eV and an absorption coefficient of about 105cm−1, which makes it a promising photocathode for PEC water splitting. The idea of our multilayer electrode is to deposit a thin layer of CdS on top of CIGS to form a solid-state p–n junction and lead to more efficient charge separation. In addition another thin layer of AZO (Aluminum doped zinc oxide) is deposit on top of CdS since it would form a better alignment between the AZO/CdS/CIGS interfaces, which would help to drive the charge transport further and minimize charge recombination. Finally, a TiO2 layer on top of the electrodes is used as protective layer during the H2 evolution. FTO (Fluorine doped tin oxide) and Molybdenum are used as back-contact. We used the technique of RF magnetron sputtering to deposit the thin layers of material. The structural characterization performed by XDR measurement confirm a polycrystalline chalcopyrite structural with a preferential orientation along the (112) direction for the CIGS. From linear fit of the Tauc plot, we get an energy gap of about 1.16 eV. In addition, from a four points measurements, we get a resistivity of 0.26 Ωcm. We performed an electrochemical characterization in cell of our electrodes. The results show that our samples have a good stability but produce a photocurrent of the order of μA, three orders of magnitude smaller than our targets. The EIS analysis confirm a significant depletion of the species in front of the electrode causing a lower conversion of the species and less current flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La ricerca di un'ottima qualità costruttiva è diventata, per ogni fornitore o produttore legato all’ambito automotive/motoristico, l’aspetto principale nella produzione di un veicolo, soprattutto nel caso specifico di un motore: per garantire, dunque, una buona qualità generale lungo tutta la gamma di produzione, è necessario avere una buona “ripetibilità” di costruzione, ossia, è fondamentale poter assemblare un alto numero di motori che siano il più possibile identici tra loro; considerando tutte le variabili che intervengono lungo la catena di produzione, a partire dalla banale lavorazione meccanica delle parti, fino all’assemblaggio stesso del motore. E' facilmente intuibile, pertanto, come non sia così raro avere delle leggere imperfezioni tra motore e motore che possono poi andare ad impattare sulla vita e sulle performance stesse del mezzo. Questo discorso è ancora più valido se si parla dell’ambito racing, in cui la qualità costruttiva, e, quindi, le performance, giocano un ruolo fondamentale nella progettazione di un motore, nonostante il volume produttivo sia tutto sommato piccolo. L’obiettivo dell'elaborato è quello di creare un metodo di controllo e di confronto della qualità/precisione costruttiva, intesa sia come qualità di produzione delle parti che di assemblaggio del motore finito. A partire da una scansione laser tridimensionale, sotto forma di una nuvola di punti, si è creato un software di elaborazione dati che permettesse di arrivare a calcolare il rapporto di compressione reale del motore in analisi e la mappa di squish tramite la sovrapposizione virtuale delle due scansioni relative ai cilindri/pistoni del blocco motore e la testa del motore stesso.