946 resultados para LASER FLUORESCENCE DEVICE
Resumo:
An optimal feedback control of two-photon fluorescence in the ethanol solution of 4-dicyanomethylene-2-methyl-6-p-dimethyl-amiiiostryryl-4H-pyran (DCM) using pulse-shaping technique based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence of the DCM ethanol solution is enhanced in intensity of about 23%. The second harmonic generation frequency-resolved optical gating (SHG-FROG) trace indicates that the effective population transfer arises from the positively chirped pulse. The experimental results appear the potential applications of coherent control to the complicated molecular system.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We report a method for the selective introduction of fluorescent Ag nanoclusters in glass. Extinction and photoluminescence spectra show that a fraction of the Ag atoms are generated through femtosecond laser induced multiphoton reduction and then aggregate to form Ag nanoclusters after heat treatment. Red luminescence from the irradiated region is observed under blue or green laser excitation. The fluorescence can be attributed to interband transitions within Ag nanoclusters. This method provides a novel route to fabricate fluorescent nanomaterials in 3D transparent materials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effect of alcohol solution on single human red blood Cells (RBCs) was investigated using near-infrared laser tweezers Raman spectroscopy (LTRS). In our system, a low-power diode laser at 785 nm was applied for the trapping of a living cell and the excitation of its Raman spectrum. Such a design could simultaneously reduce the photo-damage to the cell and suppress the interference from the fluorescence on the Raman signal. The denaturation process of single RBCs in 20% alcohol solution was investigated by detecting the time evolution of the Raman spectra at the single-cell level. The vitality of RBCs was characterized by the Raman band at 752 cm(-1), which corresponds to the porphyrin breathing mode. We found that the intensity of this band decreased by 34.1% over a period of 25 min after the administration of alcohol. In a further study of the dependence of denaturation on alcohol concentration, we discovered that the decrease in the intensity of the 752 cm(-1) band became more rapid and more prominent as the alcohol concentration increased. The present LTRS technique may have several potential applications in cell biology and medicine, including probing dynamic cellular processes at the single cell level and diagnosing cell disorders in real time. Copyright (c) 2005 John Wiley T Sons, Ltd.
Resumo:
We propose a sinusoidal phase-modulating laser diode interferometer for measuring small angular displacement. The interferometer is based on a Fabry-Perot plate. It has a simple structure and is insensitive to external disturbance. Sinusoidal phase-modulating interferometry is used for improving the measurement accuracy. A charge-coupled device (CCD) image sensor is used for measuring the distance between the reflected beams from two faces of the Fabry-Perot plate. From the distance, the initial angle of incidence is calculated. Compared with Michelson interferometers and autocollimators, this interferometer has the advantage of compact size and simple structure. The numerical calculation and experimental results verify the usefulness of this novel interferometer. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In a configuration of optical far-field scanning microscopy, super-resolution achieved by inserting a third-order optical nonlinear thin film is demonstrated and analyzed in terms of the frequency response function. Without the thin film the microscopy is diffraction limited; thus, subwavelength features cannot be resolved. With the nonlinear thin film inserted, the resolution is dramatically improved and thus the microscopy resolves features significantly smaller than the smallest spacing allowed by the diffraction limit. A theoretical model is established and the device is analyzed for the frequency response function. The results show that the frequency response function exceeds the cutoff spatial frequency of the microscopy defined by the laser wavelength and the numerical aperture of the convergent lens. The main contribution to the improvement of the cutoff spatial frequency is from the phase change induced by the complex transmission of the nonlinear thin film. Experimental results are presented and are shown to be consistent with the results of theoretical simulations.
Resumo:
The pulse-shaping technique has found widespread applications in nonlinear optics and material processing. Experimental research on laser-induced plasma shutter to control the 532 nm pulse width is conducted. The impacts of the total pulse output energy on pulse compression are investigated, and a useful conclusion can be drawn that there exists an optimal value of pulse energy at which the shortest output pulse of 3.23 ns can be obtained without a device for delay-time. Once the device for delay-time is employed to change the optical differences between two laser paths, the pulse width can be further shortened to 1.51 ns. In short, the 1.5-12 ns width-tunable 532 nm laser pulses have been obtained by adopting the laser-induced plasma shutter technique. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The effects of F- ions in Yb3+-doped tellurite glass systems on the emission cross-section and measured fluorescence lifetime are investigated. The results show that both the emission cross-section and the fluorescence lifetime of Yb3+ ions increase from 1.32 to 1.39 pm(2) and from 0.93 to 1.12 ms respectively with the increase of F- ions from 0 to 10 mol% and that such oxyfluoride tellurite glass system is a promising laser host matrix for high power generation. FT-IR spectra were used to analyze the effect of F- ions on the structure of tellurite glasses and the change of OH- groups in this glass system. Analysis demonstrates that the addition of fluoride decreases the symmetry of the structure of tellurite glasses resulting in increasing of the emission cross-section and removes the OH- groups resulting in increasing of the measured fluorescence lifetime of Yb3+ ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of F- ions in a germanium-lead-tellurite glass system oil the spectral and potential laser properties of the Yb3+ are investigated. The absorption spectra, lifetimes, the emission cross-sections and the minimum pump intensities of the glass system with and without F- ions have been measured and calculated. The results show that the fluorescence lifetime and the minimum pump intensity of Yb3+ ions increase evidently, which indicates that germanium lead-oxyfluoride tellurite glass is a promising laser host matrix for high power generation. FT-IR spectra were used to analyse the effect of F- ions on OH- groups in this glass system. Analysis demonstrates that addition of fluoride removes the OH- groups and results in improvement of fluorescence lifetime of Yb3+.
Resumo:
Structural and frequency upconversion fluorescence properties of Er3+/Yb3+-codoped oxychloride germanate glasses have been investigated. The Raman spectrum investigation indicates that PbCl2 plays an important role in the formation of glass network and has an important influence on the upconversion luminescence. Intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible upconversion mechanism was also estimated and evaluated. Intense upconversion luminescence indicates that Er3+/Yb3+-codoped oxychloride germanate glass is a promising laser material. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
TiO2/ormosil films doped with laser dyes have been prepared by the sol-gel method. Spectroscopic properties of the entrapped dyes are studied by the absorption and emission techniques. The results indicate that the absorption and fluorescence spectra of kiton red depend strongly on the properties of the ormosil matrices. The heat-treatment of the kiton red-doped film obviously leads to the increasing fluorescence intensity and the largest fluorescence intensity is obtained after heat-treatment of 150 degrees C for 2 h. However, the fluorescence intensity of the rhodamine 6G-doped film decreases with the increase of the heat-treatment temperature. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.
Resumo:
We study the structural and infrared-to-visible upconversion fluorescence properties of Er3(+)/Yb3+-codoped lead-free germanium-bismuth glass. The structure of lead-free germanium-bismuth-lanthanum glass is investigated by peak-deconvolution of Raman spectroscopy. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> (IT15/2)-I-4 -> S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, are observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm excitation.
Resumo:
this paper was retracted
Resumo:
We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.