1000 resultados para Isotopic Composition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New trace element, Sr-, Nd-, Pb- and Hf isotope data provide insights into the evolution of the Tonga-Lau Basin subduction system. The involvement of two separate mantle domains, namely Pacific MORB mantle in the pre-rift and early stages of back-arc basin formation, and Indian MORB mantle in the later stages, is confirmed by these results. Contrary to models proposed in recent studies on the basis of Pb isotope and other compositional data, this change in mantle wedge character best explains the shift in the isotopic composition, particularly 143Nd/144Nd ratios, of modern Tofua Arc magmas relative to all other arc products from this region. Nevertheless, significant changes in the slab-derived flux during the evolution of the arc system are also required to explain second order variations in magma chemistry. In this region, the slab-derived flux is dominated by fluid; however, these fluids carry Pb with sediment-influenced isotopic signatures, indicating that their source is not restricted to the subducting altered mafic oceanic crust. This has been the case from the earliest magmatic activity in the arc (Eocene) until the present time, with the exception of two periods of magmatic activity recorded in samples from the Lau Islands. Both the Lau Volcanic Group, and Korobasaga Volcanic Group lavas preserve trace element and isotope evidence for a contribution from subducted sediment that was not transported as a fluid, but possibly in the form of a melt. This component shares similarities with that influencing the chemistry of the northern Tofua Arc magmas, suggesting some caution may be required in the adoption of constraints for the latter dependent upon the involvement of sediments from the Louisville Ridge. A key outcome of this study is to demonstrate that the models proposed to explain subduction zone magmatism cannot afford to ignore the small but important contributions made by the mantle wedge to the incompatible trace element inventory of arc magmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over a broad region of the eastern Japan Sea, Neogene opaline diatomaceous sediments alter with depth to hard porcellanites and cherts composed of opal-CT and quartz. We examined the oxygen isotopic compositions of these diagenetic silica minerals at four widely spaced sites occupied during ODP Leg 127 in order to investigate the thermal history of the region. Formation temperatures computed from these isotopic data range from 22° to 68°C for opal-CT and from 44° to 92°C for diagenetic quartz, quite similar to temperature ranges estimated from the extrapolated modern gradients, 36°-43°C and 49°-64°C, respectively. At each site the isotopic temperature values cluster near the extrapolated ambient sediment temperatures. As a first approximation, the similarities suggest that the positions of the silica transformations in the basin are controlled by the present thermal regime. In detail, isotopic and ambient temperatures differ. If these differences are real, then they reflect variations in the thermal histories at these sites. At Sites 794 and 797 in the Yamato Basin, isotopic temperatures and gradients computed from these data are lower than or comparable to ambient temperatures and gradients. We suggest that the silica zones have roughly equilibrated with the modern gradients at these localities. At Site 795 in the Japan Basin, isotopic temperatures are also lower than ambient sediment temperatures at comparable depths, but the gradient computed from the isotopic temperatures is higher than the present measured gradient. For both scenarios to hold, the silica zones must have formed under initially high gradients during the early post-rift period at this locality. These zones were then rapidly buried and have yet to equilibrate with the modern lower gradient. At Site 796 on Okushiri Ridge, isotopic temperatures exceed present temperatures as expected for an area of recent uplift. The gradient computed from our isotopic data and the thickness of the opal-CT zone indicate a higher gradient than at present at this site, apparently reflecting higher heat fluxes during the early post-rift period or recent frictional heating from nearby reverse fault activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AND-2A drillcore (Antarctic Drilling Program-ANDRILL) was successfully completed in late 2007 on the Antarctic continental margin (Southern McMurdo Sound, Ross Sea) with the aim of tracking ice proximal to shallow marine environmental fluctuations and to document the 20-Ma evolution of the Erebus Volcanic Province. Lava clasts and tephra layers from the AND-2A drillcore were investigated from a petrographic and stratigraphic point of view and analyzed by the 40Ar-39Ar laser technique in order to constrain the age model of the core and to gain information on the style and nature of sediment deposition in the Victoria Land Basin since Early Miocene. Ten out of 17 samples yielded statistically robust 40Ar-39Ar ages, indicating that the AND-2A drillcore recovered <230 m of Middle Miocene (~128-358 m below sea floor, ~11.5-16.0 Ma) and >780 m of Early Miocene (~358-1093 m below sea floor, ~16.0-20.1 Ma). Results also highlight a nearly continuous stratigraphic record from at least 358 m below sea floor down hole, characterized by a mean sedimentation rate of ~19 cm/ka, possible oscillations of no more than a few hundreds of ka and a break within ~17.5-18.1 Ma. Comparison with available data from volcanic deposits on land, suggests that volcanic rocks within the AND-2A core were supplied from the south, possibly with source areas closer to the drill site for the upper core levels, and from 358 m below sea floor down hole, with the 'proto-Mount Morning' as the main source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theories explaining the origin of the abrupt, massive discharges of ice-rafted detritus (IRD) into the glacial North Atlantic (the Heinrich layers (HLs)) generally point to the Laurentide ice sheet as the sole source of these events, until it was found that the IRDs also originated from Icelandic and European ice sheets (Bond and Lotti, 1995, doi:10.1126/science.267.5200.1005; Snoeckx et al., 1999, doi:10.1016/S0025-3227(98)00168-6; Grousset et al., 2000, doi:10.1130/0091-7613(2000)28<123:WTNAHE>2.0.CO;2). This apparent contradiction must be reconciled as it raises fundamental questions about the mechanism(s) of HL origin. We have analyzed two ~12 cm thick HLs in an ultrahigh-resolution mode (1-2 century intervals) in a mid-Atlantic ridge piston core. The d18O record (N. pachyderma left coiling) reveals strong excursions induced by the melting of the icebergs; these excursions are associated with a strong decrease in the amount of planktic foraminafersand with a 3°C cooling of the surface waters. Counts of coarse detrital grains reveal that IRD are deposited according to a typical sequence (1) volcanic glass, (2) quartz and feldspars, (3) detrital carbonate, that implies a chronology in the melting of the differentpan-Atlantic ice sheets. Sr and Nd isotopic composition confirm that in both Heinrich layers H1 and H2, "precursor" IRD came from first Europe/Iceland, followed then by Laurentide-derived IRD. An internal cyclicity can be identified: during H1 and H2, about four to six major, abrupt discharges occurred roughly on a century timescale. The d13C and d15N records reveal that dominant inputs of continent-derived organic matter are associated with IRD within the HLs, hiding the plankton productivity signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Yamato Basin basement in the Sea of Japan was drilled below the sediment pile during Legs 127 and 128. Two superposed volcanic complexes are distinguished. The upper complex consists of continental tholeiite sills dated around 20-18 Ma and attributed to the rifting stage of the backarc basin. The lower complex consists of backarc basin basalts probably intruded below the upper complex during the spreading stage. Trace-element compositions and Sr and Nd isotopic signatures may be explained by mixing of at least two end members with a very small addition of crustal and subducted sediment component. Thus, upwelling of mantle diapir occurred during the rifting stage. Contribution of the depleted mantle increased in the spreading stage. The Neogene magmatic history of the Japan Sea is reviewed in the light of the ODP new data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic geochemistry of Sites 1108 and 1109 of the Woodlark Basin, offshore Papua New Guinea, was studied to determine whether thermally mature hydrocarbons were present in the penetrated section and, if present, whether they are genetically related to the penetrated "coaly" interval. Both the organic carbon and pyrolysis data indicate that there is no significant hydrocarbon source-rock potential at Site 1108. The hydrocarbons encountered during drilling appear to be indigenous and not migrated products or contaminants. In contrast, the coaly interval at Site 1109 contains zones with significant hydrocarbon-generation potential. Several independent lines of evidence indicate that the coaly sequence encountered at Site 1109 is thermally immature. The Site 1108 methane stable-carbon isotope composition does not display a clear trend with depth as would be expected if it was solely reflecting a maturation profile. The measured isotopic composition of methane has most probably been altered by fractionation during sample handling and storage. This fractionation would result in isotopically heavier values than would be obtained on free gas. The organic geochemical data gathered indicate that Site 1108 can be safely revisited and that the organic-rich sediments encountered at Site 1109 were not the source of the gas encountered at Site 1108.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An intensive stable isotopic investigation was conducted on sediments recovered from the Great Australian Bight during Ocean Drilling Program Leg 182 at Sites 1127, 1129, and 1131. The sites comprise a transect from the shelf edge to upper slope through a thick sequence of predominately Quaternary cool-water carbonate sediments. Detailed mineralogic and stable isotopic (d18O and d13C) analyses of sediments from a total of 306 samples are presented from all three sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents characteristics of the Nd and Sr isotopic systems of ultrabasic rocks, gabbroids, plagiogranites, and their minerals as well as data on helium and hydrocarbons in fluid inclusions of the same samples. Materials presented in this publication were obtained by studying samples dredged from the MAR crest zone at 5°-6°N (U/Pb zircon dating, geochemical and petrological-mineralogical studies). It was demonstrated that variations in the isotopic composition of He entrapped in rocks and minerals were controlled by variable degrees of mixing of juvenile He, which is typical of basaltic glass for MAR (DM source), and atmospheric He. Increase in the atmospheric He fraction in plutonic rocks and, to a lesser degree, in their minerals reflects involvement of seawater or hydrated material of the oceanic crust in magmatic and postmagmatic processes. This conclusion finds further support in positive correlation between the fraction of mantle He (R ratio) and 87Sr/86Sr ratio. High-temperature hydration of ultrabasic rocks (amphibolization) was associated with increase in the fraction of mantle He, while their low-temperature hydration (serpentinization) was accompanied by drastic decrease in this fraction and significant increase in 87Sr/86Sr ratio. Insignificant variations in 143Nd/144Nd (close to 0.5130) and 87Sr/86Sr (0.7035) in most of gabbroids and plagiogranites as well as the fraction of mantle He in these rocks, amphibolites, and their ore minerals indicate that the melts were derived from the depleted mantle. Similar e-Nd values of gabbroids, plagiogranites, and fresh harzburgites (6.77-8.39) suggest that these rocks were genetically related to a single mantle source. e-Nd value of serpentinized lherzolites (2.62) likely reflects relations of these relatively weakly depleted mantle residues to another source. Aforementioned characteristics of the rocks generally reflect various degrees of mixing of depleted mantle components with crustal components (seawater) during metamorphic and hydrothermal processes that accompanied formation of the oceanic crust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Helium isotope composition as an indicator of the mantle-derived component was studied in gases from mineral springs, stratal waters, and mud volcanoes developed west of the Teberda River valley (10 objects) and two springs in the central segment of the Greater Caucasus orogen between the active El'brus and Kazbek volcanoes. In the western segment of the orogen ratios of 3He/4He = R_corr vary from 46x10**-8 to 114x10**-8 (from 0.33 to 0.81 R_atm, where R_atm = 1.4x10**-6 is the atmospheric ratio). They are substantially lower relative to ratios in the vicinity of El'brus and Kazbek and close to those in samples from the central segment (from 70x10**-8 to 134x10**-8 (from 0.50 to 0.96 R_atm), as well as to ratios previously recorded in the Caucasian Mineral Waters (CMW) area. Moreover, concentration of 3He in them is notably higher than its crustal radiogenic level characteristic of mud volcanoes in the Taman Peninsula, where 3He/4He varies from 1.4x10**-8 to 2.8x10**-8 (from 0.01 to 0.02 R_atm). Nitrogen-methane gas from northern piedmonts of the western Caucasus also contains nonatmogenic components including radiogenic 40Ar (40Ar/36Ar = 900), excessive nitrogen (~87% of total N2 concentration in sample) and mantle He. These data specify distribution of mantle derivates along the orogen strike and age of intrusive magmatic activity in its different segments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of new bulk major and trace element (including REE) as well as Sm-Nd and Rb-Sr isotope data, used in conjunction with available geochronological data, a post-tectonic mafic igneous province and four groups of pre- to syntectonic amphibolite are distinguished in the polymetamorphic Maud Belt of western Dronning Maud Land, East Antarctica. Protoliths of the Group 1 amphibolites are interpreted as volcanic arc mafic intrusions with Archaean to Palaeoproterozoic Nd model ages and depletion in Nb and Ta. Isotopic and lithogeochemical characteristics of this earliest group of amphibolite indicate that the Maud Belt was once an active continental volcanic arc. The most likely position of this arc, for which a late Mesoproterozoic age (c. 1140 Ma) is indicated by available U-Pb single-zircon age data, was on the southeastern margin of the Kaapvaal-Grunehogna Craton. The protoliths of Group 2 amphibolites are attributed to the 1110 Ma Borgmassivet-Umkondo thermal event on the basis of comparable Nd model ages and trace element distributions. Group 3 amphibolite protoliths are characterized by mid-ocean ridge basalt-type REE patterns and low Th/Yb ratios, and they are related to Neoproterozoic extension. Group 4 amphibolite protoliths are distinguished by high Dy/Yb ratios and are attributed to a phase of syntectonic Pan-African magmatism as indicated by Rb-Sr isotope data.