970 resultados para Isomerization of Epoxides


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly alternative copolymer of carbon dioxide and propylene oxide was obtained using a lanthanide trichloroacetates-based ternary catalyst. The rare-earth compound in the ternary catalyst was critical to dramatically raise the yield and molecular weight of the copolymer in addition to maintaining a high alternating ratio of the copolymer. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cryo-hydrogel membrane (CHM) immobilized at a glassy carbon (GC) electrode is reported for the direct electron transfer of redox proteins. The most attractive characteristics of this CHM were its hydrophilic micro-environment for incorporated proteins to retain their activities, its high ability for protection against interference of denatured and adsorbed proteins at the electrode, its potential applications for various proteins or enzymes, as well as its high mechanical strength and thermal stability. A clear well developed and stable redox wave was obtained for commercially available horse heart myoglobin without further purification, giving a peak to peak separation Delta E(p) = 93 mV at 5 mV s(-1) and the formal electrode potential E(0)' = -0.158 V (vs. Ag/AgCl). The formal heterogeneous electron transfer rate constant was calculated as k(0)' = 5.7 X 10(-4) cm s(-1) at pH 6.5, showing rapid electron transfer was achieved. The pH controlled conformational equilibria, acid state --> natural state --> basic I state --> basic II state, of myoglobin at the CHM GC electrode in the pH range 0-13.8 were also observed and are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mass spectral behaviour of 15 new type of organic phosphorus compounds with a considerable insecticidal activity, 1, 3,2-oxazaphospholidine 2-sulfides derivatives, under 70 eV electron impact has been studied by means of high and low resolution mass spectrometry as well as by B/E linked scan and MIKES/CID analysis. Discussion is focused into the isomerization between oxygen and sulphur in molecules and some rearrangement reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve the sulfur resistance of noble metal catalysts in the aromatic hydrogenation of diesel fuel, the alloying effect of non-noble metals with Pd was studied. Toluene hydrogenation over Pd and Pd-M bimetallic catalysts (M = Cr, W,La, Mn, Mo, Ag) on a mixed HY-Al2O3 support was investigated in the presence of 3000 ppm sulfur as thiophene in the feedstock. The results showed that the addition of the second metals strongly affected the activity of toluene hydrogenation, which suggests that the sulfur resistibility of Pd-M bimetallic catalysts is much different from single Pd. La, Mn, Mo and Ag decreased the sulfur resistance of the palladium catalysts. For example, the toluene conversion at 553 K was observed to decrease sharply from 39.4 wt.% on Pd to 1.6 wt.% on Pd-Ag, which is by a factor of 25. One of the important findings in this article is that Cr and W increase hydrogenation activity of Pd catalysts. The reactions occurring on these catalysts include hydrogenation, isomerization and hydrocracking, The addition of the second metals has no noticeable effects on the hydrogenation and isomerization selectivity, but it slightly suppresses hydrocracking reactions. The four typical catalysts, Pd-Cr, Pd-W, Pd-Ag and Pd were characterized by infrared (IR) spectroscopy of pyridine and CO. LR spectra of CO revealed the strong interaction between Pd and the second metal as Cr, W and Ag (or their oxide), indicating that the improvement in sulfur resistance originates from electron-deficient Pd with the addition of second metals. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoic acids (13-cis and 13-trans) are known teratogens, and their precursor is retinol, a form of vitamin A. In 1995, Rothman et al demonstrated an association between excessive vitamin A, >10,000 IU/day, during the first trimester of pregnancy and teratogenic effects, particularly in the central nervous system. However, vitamin A deficiency has long been known to be deleterious to the mother and fetus. Therefore, there may be a narrow therapeutic ratio for vitamin A during pregnancy that has not previously been fully appreciated. Neurodevelopmental disorders may not be apparent by macroscopic brain examination or imaging, and proving the existence of a behavioral teratogen is not straightforward. However, an excess of retinoic acid and some neurodevelopmental disorders are both associated with abnormalities in cerebellar morphology. Physical and chemical evidence strongly supports the notion that beta carotene crosses the placenta and is metabolized to retinol. Only very limited amounts of beta carotene are stored in fetal fat cells as evidenced by the fact that maternal fat is yellow from beta carotene, whereas non-brown neonatal fat is white. Furthermore, newborns of carotenemic mothers do not share the yellow complexion of their mothers. The excess 13-trans retinoic acid derived from metabolized beta carotene in the fetus increases the concentration of the more teratogenic 13-cis retinoic acid since the isomerization equilibrium is shifted to the left. Therefore, this paper proposes that consideration be given to monitoring all potential sources of fetal 13-cis and 13-trans retinoic acid, including nutritional supplements, dietary retinol, and beta carotene, particularly in the first trimester of pregnancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epoxides and phosphites are often used as additives to stabilize the properties of polymers, including bisphenol A polycarbonate (BPA-PC). We describe density functional (DF) calculations of the reactions of cyclohexene oxide (CHO, cyclohexane epoxide) and phosphites with chain segments of BPA-PC, with the aim of identifying possible reaction paths and energy barriers. The reactions of CHO with the OH-terminated PC chains and with the carbonate group are exothermic, although there is an energy barrier in each case of more than 10 kcal/mol. A comparison of results for different CHO isomers demonstrates the importance of steric effects. The reactions between the same groups of the PC chain and the phosphites 2-[2,4-bis(tert-butyl)phenoxy]-5,5-dimethyl-1,3,2-dioxaphosphorinane] (BPDD) and trimethyl phosphite (TMP), and their phosphonate isomers are characterized by large energy barriers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we describe our application of the O-directed free radical hydrostannation of disubstituted alkyl-acetylenes (with Ph3SnH and Et3B) to the (+)-pumiliotoxin B total synthesis problem. Specifically, we report on the use of this method in the synthesis of the Overman alkyne 8, and thereby demonstrate the great utility of this process in a complex natural product total synthesis setting for the very first time. We also report here on a new, stereocontrolled, and highly practical enantioselective pathway to Overman's pyrrolidine epoxide partner 9 for 8, which overcomes the previous requirement for use of preparative HPLC to separate the 1:1 mixture of diastereomeric epoxides that was obtained in the original synthesis of 9.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface characterization of amorphous silica-alumina (ASA) by COads IR, pyridine(ads) IR, alkylamine temperature-programmed desorption (TPD), Cs+ and Cu(EDA)(2)(2+) exchange, H-1 NMR, and m-xylene isomerization points to the presence of a broad range of Bronsted and Lewis acid sites. Careful interpretation of IR spectra of adsorbed CO or pyridine confirms the presence of a few very strong Bronsted acid sites (BAS), typically at concentrations lower than 10 mu mol/g. The general procedure for alkylamine TPD, which probes both Bronsted and Lewis acidity, is modified to increase the selectivity to strong Bronsted acid sites. Poisoning of the m-xylene isomerization reaction by a base is presented as a novel method to quantify strong BAS. The surface also contains a weaker form of BAS, in concentrations between 50 and 150 mu mol/g, which can be quantified by COads IR Cu(EDA)(2)(2+) exchange also probes these sites. The structure of these sites remains unclear, but they might arise from the interaction of silanol groups with strong Lewis acid Al3+ sites. The surface also contains nonacidic aluminol and silanol sites (200-400 mu mol/g) and two forms of Lewis acid sites: (i) a weaker form associated with segregated alumina domains containing five-coordinated Al, which make up the interface between these domains and the ASA phase and (ii) a stronger form, which are undercoordinated Al sites grafted onto the silica surface. The acid catalytic activity in bifunctional n-heptane hydroconversion correlates with the concentration of strong BAS. The influence of the support electronegativity on the neopentane hydrogenolysis activity of supported Pt catalysts is considerably larger than that of the support Bronsted acidity. It is argued that strong Lewis acid sites, which are present in ASA but not in gamma-alumina, are essential to transmit the Sanderson electronegativity of the oxide support to the active Pt phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the structural and electronic properties of p-coumaric acid, the chromophore of the photoactive yellow protein (PYP), by means of first-principles molecular dynamics based on density functional theory (DFT). We have studied the chromophore both in the vacuum and in an extended model which includes the nearest residues in the binding pocket of PYP, as derived from crystallographic data. We have characterized the ground state of the isolated chromophore in its protonated and deprotonated forms and computed the energy barrier involved in the trans to cis isomerization process around the carbon-carbon double bond. A comparison of the optimized structures of the chromophore in the vacuum and in the extended protein model, both in the trans (ground state of PYP in the dark) and cis (first light-activated intermediate) configuration, shows how the protein environment affects the chromophore in the first step of the photocycle. Our model gives an energy storage of 25 kcal/mol associated with the trans-to-cia photoisomerization. Finally, we have elucidated the nature of the electronic excitation relevant for the photochemistry of PYP by means of time-dependent DFT calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enantiopure cis-dihydrodiol bacterial metabolites of substituted benzene substrates were used as precursors, in a chemoenzymatic synthesis of the corresponding benzene oxides and of a substituted oxepine, via dihydrobenzene oxide intermediates. A rapid total racemization of the substituted benzene 2,3-oxides was found to have occurred, via their oxepine valence tautomers, in accord with predictions and theoretical calculations. Reduction of a substituted arene oxide to yield a racemic arene hydrate was observed. Arene hydrates have also been synthesised, in enantiopure form, from the corresponding dihydroarene oxide or trans-bromoacetate precursors. Biotransformation of one arene hydrate enantiomer resulted in a toluene-dioxygenase catalysed cis-dihydroxylation to yield a benzene cis-triol metabolite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactions of enantiopure cyclohexene epoxides and trans-1,2-bromoacetates, derived from the corresponding substituted benzene cis-dihydrodiol metabolites, with nitrogen nucleophiles, were examined and possible mechanisms proposed. An initial objective was the synthesis of new 1,2-aminoalcohol enantiomers as potential chiral ligands and synthetic scaffolds for library generation. These apparently simple substitution reactions proved to be more complex than initially anticipated and were found to involve a combination of different reaction mechanisms. Allylic trans-1,2-azidohydrins were prepared by Lewis acid-catalysed ring-opening of cyclic vinyl epoxides with sodium azide via an S(N)2 mechanism. On heating, these trans-1,2-azidohydrins isomerized to the corresponding trans-1,4-azidohydrins via a suprafacial allyl azide [3,3]-sigmatropic rearrangement mechanism. Conversion of a 1,2-azidohydrin to a 1,2-azidoacetate moved the equilibrium position in favour of the 1,4-substitution product. Allylic trans-1,2-bromoacetates reacted with sodium azide at room temperature to give C-2 and C-4 substituted products. A clean inversion of configuration at C-2 was found, as expected, from a concerted S(N)2-pathway. However, substitution at C-4 was not stereoselective and resulted in mixtures of 1,4-cis and 1,4-trans products. This observation can be rationalized in terms of competitive S(N)2 and S(N)2 reactions allied to a [3,3]-sigmatropic rearrangement. cis-1,2-Azidohydrins and cis-1,2-azidoacetates were much more prone to rearrange than the corresponding trans-isomers. Reaction of the softer tosamide nucleophile with trans-1,2-bromoacetates resulted, predominantly, in C-4 substitution via a syn-S(N)2 mechanism. One application of the reaction of secondary amines with allylic cyclohexene epoxides, to give trans-1,2-aminoalcohols, is in the synthesis of the anticholinergic drug vesamicol, via an S(N)2 mechanism. Copyright (c) 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptidyl prolyl isomerases (PPIases) are proteins belonging to the immunophilin family and are characterised by their cis-trans isomerization activity at the X-Pro peptide bond, in addition to their tetratricopeptide repeat (TPR) domain, important for interaction with the molecular chaperone, Hsp90. Due to this unique structure these proteins are able to facilitate protein-protein interactions which can impact significantly on a range of cellular processes such as cell signalling, differentiation, cell cycle progression, metabolic activity and apoptosis. Malfunction and/or dysregulation of most members of this class of proteins promotes cellular damage and tissue/organ failure, predisposing to ageing and age-related diseases. Many individual genes within the PPIase family are associated with several age-related diseases including cardiovascular diseases (CVDs), atherosclerosis, type II diabetes (T2D), chronic kidney disease (CDK), neurodegeneration, cancer and age-related macular degeneration (AMD), in addition to the ageing process itself. This review will focus on the different roles of PPIases, and their therapeutic/biomarker potential in these age-related vascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure CoAPO4-40 and CoAPSO-40 samples have been synthesized. The CoII <=> CoIII framework transformation, and hence the number of potential acid sites has been evaluated by spectroscopic techniques and using m-xylene isomerization as model reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2014