922 resultados para IMMUNODEFICIENCY
Resumo:
Five structurally related thiophene and furane analogues of the oxathiin carboxanilide derivative NSC 615985 (UC84) (designated UC10, UC68, UC81, UC42, and UC16) were identified as potent inhibitors of HIV-1 replication in cell culture and HIV-1 reverse transcriptase activity. These compounds were markedly active against a series of mutant HIV-1 strains, containing the Leu-100-->Ile, Val-106-->Ala, Glu-138-->Lys, or Tyr-181-->Cys mutations in their reverse transcriptase. However, the thiocarboxanilide derivatives selected for mutations at amino acid positions 100 (Leu-->Ile), 101 (Lys-->Ile/Glu), 103 (Lys-->Thr/Asp) and 141 (Gly-->Glu) in the HIV-1 reverse transcriptase. The compounds completely suppressed HIV-1 replication and prevented the emergence of resistant virus strains when used at 1.3-6.6 microM--that is, 10- to 25-fold lower than the concentration required for nevirapine and bis(heteroaryl)piperazine (BHAP) U90152 to do so. If UC42 was combined with the [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"- oxathiole-2",2"-dioxide)]-beta-D-pentofuranosyl (TSAO) derivative of N3-methylthymine (TSAO-m3T), virus breakthrough could be prevented for a much longer time, and at much lower concentrations, than if the compounds were used individually. Virus breakthrough could be suppressed for even longer, and at lower drug concentrations, if BHAP was added to the combination of UC42 with TSAO-m3T, which points to the feasibility of two- or three-drug combinations in preventing virus breakthrough and resistance development.
Resumo:
The human immunodeficiency virus 1 (HIV-1) replicates more efficiently in T-cell lines expressing T-cell receptors derived from certain V beta genes, V beta 12 in particular, suggesting the effects of a superantigen. The targeted V beta 12 subset was not deleted in HIV-1-infected patients. It was therefore possible that it might represent an in vivo viral reservoir. Viral load was assessed by quantitative PCR with gag primers and with an infectivity assay to measure competent virus. It was shown that the tiny V beta 12 subset (1-2% of T cells) often has a higher viral load than other V beta subsets in infected patients. Selective HIV-1 replication in V beta 12 cells was also observed 6-8 days after in vitro infection of peripheral blood lymphocytes from normal, HIV-1 negative donors. Viral replication in targeted V beta subsets may serve to promote a biologically relevant viral reservoir.
Resumo:
A number of studies have suggested that topoisomerase I (topo I) activity may be important in human immunodeficiency virus type 1 (HIV-1) replication. Specifically it has been reported that purified virus particles have topo I activity and that inhibitors of this enzyme can inhibit virus replication in vitro. We have investigated a possible association of HIV-1 gag proteins with topo I activity. We found that whereas the gag-encoded proteins by themselves do not have activity, the nucleocapsid protein p15 can interact with and enhance the activity of cellular topo I. Furthermore it could be demonstrated that topo I markedly enhanced HIV-1 reverse transcriptase activity in vitro and that this could be inhibited by the topo I-specific inhibitor camptothecin. The findings suggest that cellular topo I plays an important role in the reverse transcription of HIV-1 RNA and that the recruitment of this enzyme may be an important step in virus replication.
Resumo:
Viruses such as human immunodeficiency virus (HIV) require cellular activation for expression. Cellular activation in lymphoid cells is associated with augmented accumulation of certain phosphatidic acid (PA) species derived from the hydrolysis of glycan phosphatidylinositol (GPI). This suggests that activation of a phospholipid pathway may play a role in initiation of viral replication. To test this hypothesis, we examined the effect of tat gene expression on the production of cellular PA species, as the Tat protein is essential for HIV expression and has been implicated in activating the expression of multiple host cellular genes. Expression of tat increased the expression of PA. We then tested whether synthetic inhibitors of PA metabolism would inhibit activation of the HIV long terminal repeat by Tat and tumor necrosis factor alpha (TNF-alpha). CT-2576 suppressed both PA generation induced by Tat and HIV long terminal repeat-directed gene expression in response to Tat or TNF-alpha at a posttranscriptional step. CT-2576 also inhibited constitutive as well as TNF-alpha- and interleukin 6-induced expression of HIV p24 antigen in chronically infected U1 cells and in peripheral blood lymphocytes acutely infected with a clinical isolate of HIV. Pharmacological inhibition of synthesis of selected PA species may therefore provide a therapeutic approach to suppression of HIV replication.
Resumo:
Extracellular human immunodeficiency virus type 1 (HIV-1) Tat protein promotes growth of spindle cells derived from AIDS-associated Kaposi sarcoma (AIDS-KS), an angioproliferative disease very frequent in HIV-1-infected individuals. Normal vascular cells, progenitors of AIDS-KS cells, proliferate in response to Tat after exposure to inflammatory cytokines, whose levels are augmented in HIV-1-infected individuals and in KS lesions. Here we show that Tat also promotes AIDS-KS and normal vascular cells to migrate and to degrade the basement membrane and stimulates endothelial cell morphogenesis on a matrix substrate. These effects are obtained at picomolar concentrations of exogenous Tat and are promoted by the treatment of the cells with the same inflammatory cytokines stimulating expression of the receptors for Tat, the integrins alpha 5 beta 1 and alpha v beta 3. Thus, under specific circumstances, Tat has angiogenic properties. As Tat and its receptors are present in AIDS-KS lesions, these data may explain some of the mechanisms by which Tat can induce angiogenesis and cooperate in the development of AIDS-KS.
Resumo:
The incidence of tuberculosis is increasing on a global scale, in part due to its strong association with human immunodeficiency virus (HIV) infection. Attachment of Mycobacterium tuberculosis to its host cell, the alveolar macrophage (AM), is an important early step in the pathogenesis of infection. Bronchoalveolar lavage of HIV-infected individuals demonstrated the presence of a factor which significantly enhances the attachment of tubercle bacilli to AMs 3-fold relative to a normal control population. This factor is surfactant protein A (SP-A). SP-A levels are increased in the lungs of HIV-infected individuals. SP-A levels and attachment of M. tuberculosis to AMs inversely correlate with peripheral blood CD4 lymphocyte counts. Elevated concentrations of SP-A during the progression of HIV infection may represent an important nonimmune risk factor for acquiring tuberculosis, even before significant depletion of CD4 lymphocytes in the peripheral blood occurs.
Resumo:
The third variable region (V3 loop) of gp120, the HIV-1 surface envelope glycoprotein, plays a key role in HIV-1 infection and pathogenesis. Recently, we reported that a synthetic multibranched peptide (SPC3) containing eight V3-loop consensus motifs (GPGRAF) inhibited HIV-1 infection in both CD4+ and CD4- susceptible cells. In the present study, we investigated the mechanisms of action of SPC3 in these cell types--i.e., CD4+ lymphocytes and CD4- epithelial cells expressing galactosylceramide (GalCer), an alternative receptor for HIV-1 gp120. We found that SPC3 was a potent inhibitor of HIV-1 infection in CD4+ lymphocytes when added 1 h after initial exposure of the cells to HIV-1, whereas it had no inhibitory effect when present only before and/or during the incubation with HIV-1. These data suggested that SPC3 did not inhibit the binding of HIV-1 to CD4+ lymphocytes but interfered with a post-binding step necessary for virus entry. In agreement with this hypothesis, SPC3 treatment after HIV-1 exposure dramatically reduced the number of infected cells without altering gp120-CD4 interaction or viral gene expression. In contrast, SPC3 blocked HIV-1 entry into CD4-/GalCer+ human colon epithelial cells when present in competition with HIV-1 but had no effect when added after infection. Accordingly, SPC3 was found to inhibit the binding of gp120 to the GalCer receptor. Thus, the data suggest that SPC3 affects HIV-1 infection by two distinct mechanisms: (i) prevention of GalCer-mediated HIV-1 attachment to the surface of CD4-/GalCer+ cells and (ii) post-binding inhibition of HIV-1 entry into CD4+ lymphocytes.
Resumo:
We have attempted to model human metastatic disease by implanting human target organs into the immunodeficient C.B-17 scid/scid (severe combined immunodeficiency; SCID) mouse, creating SCID-hu mice. Preferential metastasis to implants of human fetal lung and human fetal bone marrow occurred after i.v. injection of human small cell lung cancer (SCLC) cells into SCID-hu mice; the homologous mouse organs were spared. Clinically more aggressive variant SCLC cells metastasized more efficiently to human fetal lung implants than did cells from classic SCLC. Metastasis of variant SCLC to human fetal bone marrow was enhanced in SCID-hu mice exposed to gamma-irradiation or to interleukin 1 alpha. These data indicate that the SCID-hu mice may provide a model in which to study species- and tissue-specific steps of the human metastatic process.
Resumo:
vpr is one of the auxiliary genes of human immunodeficiency virus type 1 (HIV-1) and is conserved in the related HIV-2/simian immunodeficiency virus lentiviruses. The unique feature of Vpr is that it is the only nonstructural protein incorporated into the virus particle. Secondary structural analysis predicted an amphipathic alpha-helical domain in the amino terminus of Vpr (residues 17-34) which contains five acidic and four leucine residues. To evaluate the role of specific residues of the helical domain for virion incorporation, mutagenesis of this domain was carried out. Substitution of proline for any of the individual acidic residues (Asp-17 and Glu-21, -24, -25, and -29) eliminated the virion incorporation of Vpr and also altered the stability of Vpr in cells. Conservative replacement of glutamic residues of the helical domain with aspartic residues resulted in Vpr characteristic of wild type both in stability and virion incorporation, as did substitution of glutamine for the acidic residues. In contrast, replacement of leucine residues of the helical domain (residues 20, 22, 23, and 26) by alanine eliminated virion incorporation function of Vpr. These data indicate that acidic and hydrophobic residues and the helical structure in this region are critical for the stability of Vpr and its efficient incorporation into virus-like particles.
Resumo:
The acyclic nucleoside phosphonate analog 9-(2-phosphonylmethoxyethyl)adenine (PMEA) was recently found to be effective as an inhibitor of visna virus replication and cytopathic effect in sheep choroid plexus cultures. To study whether PMEA also affects visna virus infection in sheep, two groups of four lambs each were inoculated intracerebrally with 10(6.3) TCID50 of visna virus strain KV1772 and treated subcutaneously three times a week with PMEA at 10 and 25 mg/kg, respectively. The treatment was begun on the day of virus inoculation and continued for 6 weeks. A group of four lambs were infected in the same way but were not treated. The lambs were bled weekly or biweekly and the leukocytes were tested for virus. At 7 weeks after infection, the animals were sacrificed, and cerebrospinal fluid (CSF) and samples of tissue from various areas of the brain and from lungs, spleen, and lymph nodes were collected for isolation of virus and for histopathologic examination. The PMEA treatment had a striking effect on visna virus infection, which was similar for both doses of the drug. Thus, the frequency of virus isolations was much lower in PMEA-treated than in untreated lambs. The difference was particularly pronounced in the blood, CSF, and brain tissue. Furthermore, CSF cell counts were much lower and inflammatory lesions in the brain were much less severe in the treated lambs than in the untreated controls. The results indicate that PMEA inhibits the propagation and spread of visna virus in infected lambs and prevents brain lesions, at least during early infection. The drug caused no noticeable side effects during the 6 weeks of treatment.
Resumo:
A class of potent nonpeptidic inhibitors of human immunodeficiency virus protease has been designed by using the three-dimensional structure of the enzyme as a guide. By employing iterative protein cocrystal structure analysis, design, and synthesis the binding affinity of the lead compound was incrementally improved by over four orders of magnitude. An inversion in inhibitor binding mode was observed crystallographically, providing information critical for subsequent design and highlighting the utility of structural feedback in inhibitor optimization. These inhibitors are selective for the viral protease enzyme, possess good antiviral activity, and are orally available in three species.
Resumo:
Examination of the structural basis for antiviral activity, oral pharmacokinetics, and hepatic metabolism among a series of symmetry-based inhibitors of the human immunodeficiency virus (HIV) protease led to the discovery of ABT-538, a promising experimental drug for the therapeutic intervention in acquired immunodeficiency syndrome (AIDS). ABT-538 exhibited potent in vitro activity against laboratory and clinical strains of HIV-1 [50% effective concentration (EC50) = 0.022-0.13 microM] and HIV-2 (EC50 = 0.16 microM). Following a single 10-mg/kg oral dose, plasma concentrations in rat, dog, and monkey exceeded the in vitro antiviral EC50 for > 12 h. In human trials, a single 400-mg dose of ABT-538 displayed a prolonged absorption profile and achieved a peak plasma concentration in excess of 5 micrograms/ml. These findings demonstrate that high oral bioavailability can be achieved in humans with peptidomimetic inhibitors of HIV protease.
Resumo:
Leishmaniaparasites cause a broad range of disease, with cutaneous afflictions being, by far, the most prevalent. Variations in disease severity and symptomatic spectrum are mostly associated to parasite species. One risk factor for the severity and emergence of leishmaniasis is immunosuppression, usually arising by coinfection of the patient with human immunodeficiency virus (HIV). Interestingly, several species ofLeishmaniahave been shown to bear an endogenous cytoplasmic dsRNA virus (LRV) of theTotiviridaefamily, and recently we correlated the presence of LRV1 withinLeishmaniaparasites to an exacerbation murine leishmaniasis and with an elevated frequency of drug treatment failures in humans. This raises the possibility of further exacerbation of leishmaniasis in the presence of both viruses, and here we report a case of cutaneous leishmaniasis caused byLeishmania braziliensisbearing LRV1 with aggressive pathogenesis in an HIV patient. LRV1 was isolated and partially sequenced from skin and nasal lesions. Genetic identity of both sequences reinforced the assumption that nasal parasites originate from primary skin lesions. Surprisingly, combined antiretroviral therapy did not impact the devolution ofLeishmaniainfection. TheLeishmaniainfection was successfully treated through administration of liposomal amphotericin B.
Resumo:
Background. The impact of human genetic background on low-trauma fracture (LTF) risk has not been evaluated in the context of human immunodeficiency virus (HIV) and clinical LTF risk factors. Methods. In the general population, 6 common single-nucleotide polymorphisms (SNPs) associate with LTF through genome-wide association study. Using genome-wide SNP arrays and imputation, we genotyped these SNPs in HIV-positive, white Swiss HIV Cohort Study participants. We included 103 individuals with a first, physician-validated LTF and 206 controls matched on gender, whose duration of observation and whose antiretroviral therapy start dates were similar using incidence density sampling. Analyses of nongenetic LTF risk factors were based on 158 cases and 788 controls. Results. A genetic risk score built from the 6 LTF-associated SNPs did not associate with LTF risk, in both models including and not including parental hip fracture history. The contribution of clinical LTF risk factors was limited in our dataset. Conclusions. Genetic LTF markers with a modest effect size in the general population do not improve fracture prediction in persons with HIV, in whom clinical LTF risk factors are prevalent in both cases and controls.