878 resultados para ICF CLASSIFICATION
Resumo:
This clinical study focused on effects of childhood specific language impairment (SLI) on daily functioning in late life. SLI is a neurobiological disorder with genetic predisposition and manifests as poor language production or comprehension or both in a child with age-level non-verbal intelligence and no other known cause for deficient language development. The prevalence rate of around 7% puts it among the most prevalent developmental disorders in childhood. Negative long-term effects, such as problems in learning and behavior, are frequent. In follow-up studies the focus has seldom been on self-perception of daily functioning and participation, which are considered important in the International Classification of Functioning, Disability, and Health (ICF). To investigate the self-perceived aspects of everyday functioning in individuals with childhood receptive SLI compared with age- and gender-matched control populations, the 15D, 16D, and 17D health-related quality of life (HRQoL) questionnaires were applied. These generic questionnaires include 15, 16, and 17 dimensions, respectively, and give both a single index score and a profile with values on each dimension. Information on different life domains (rehabilitation, education, employment etc.) from each age-group was collected with separate questionnaires. The study groups comprised adults, adolescents (12-16 years), and pre-adolescents (8-11 years) who had received a diagnosis of receptive SLI and had been examined, usually before school age, at the Department of Phoniatrics of Helsinki University Central Hospital, where children with language deficits caused by various etiologies are examined and treated by a multidisciplinary team. The adult respondents included 33 subjects with a mean age of 34 years. Measured with 15D, the subjects perceived their HRQoL to be nearly as good as that of their controls, but on the dimensions of speech, usual activities, mental functioning, and distress they were significantly worse off. They significantly more often lived with their parents (19%) or were pensioned (26%) than the adult Finnish population on average. Adults with self-perceived problems in finding words and in remembering instructions, manifestations of persistent language impairment, showed inferior every day functioning to the rest of the study group. Of the adolescents and pre-adolescents, 48 and 51, respectively, responded. The majority in both groups had received special education or extra educational support at school. They all had attended speech therapy at some point; at the time of the study only one adolescent, but every third pre-adolescent still received speech therapy. The 16D score of the adolescent or the 17D score of the pre-adolescents did not differ from that of their controls. The 16D profiles differed on some dimensions; subjects were significantly worse off on the dimension of mental functioning, but better off on the dimension of vitality than controls. Of the 17D dimensions, the study group was significantly worse off on speech, whereas the control group reported significantly more problems in sleeping. Of the childhood performance measures investigated, low verbal intelligence quotient (VIQ), which is often considered to reflect receptive language impairment, was in adults subjects significantly associated with some of the self-perceived problems, such as problems in usual activities and mental functioning. The 15D, 16D, and 17D questionnaires served well in measuring self-perceived HRQoL. Such standardized measures with population values are especially important in confirming with the ICF guidelines. In the future these questionnaires could perhaps be used on a more individual level in follow-up of children in clinics, and even in special schools and classes, to detect those children at greatest risk of negative long-term effects and perhaps diminished well-being regarding daily functioning and participation.
Resumo:
The present study deals with the application of cluster analysis, Fuzzy Cluster Analysis (FCA) and Kohonen Artificial Neural Networks (KANN) methods for classification of 159 meteorological stations in India into meteorologically homogeneous groups. Eight parameters, namely latitude, longitude, elevation, average temperature, humidity, wind speed, sunshine hours and solar radiation, are considered as the classification criteria for grouping. The optimal number of groups is determined as 14 based on the Davies-Bouldin index approach. It is observed that the FCA approach performed better than the other two methodologies for the present study.
Resumo:
In this paper we propose a novel family of kernels for multivariate time-series classification problems. Each time-series is approximated by a linear combination of piecewise polynomial functions in a Reproducing Kernel Hilbert Space by a novel kernel interpolation technique. Using the associated kernel function a large margin classification formulation is proposed which can discriminate between two classes. The formulation leads to kernels, between two multivariate time-series, which can be efficiently computed. The kernels have been successfully applied to writer independent handwritten character recognition.
Resumo:
This paper focuses on optimisation algorithms inspired by swarm intelligence for satellite image classification from high resolution satellite multi- spectral images. Amongst the multiple benefits and uses of remote sensing, one of the most important has been its use in solving the problem of land cover mapping. As the frontiers of space technology advance, the knowledge derived from the satellite data has also grown in sophistication. Image classification forms the core of the solution to the land cover mapping problem. No single classifier can prove to satisfactorily classify all the basic land cover classes of an urban region. In both supervised and unsupervised classification methods, the evolutionary algorithms are not exploited to their full potential. This work tackles the land map covering by Ant Colony Optimisation (ACO) and Particle Swarm Optimisation (PSO) which are arguably the most popular algorithms in this category. We present the results of classification techniques using swarm intelligence for the problem of land cover mapping for an urban region. The high resolution Quick-bird data has been used for the experiments.
Resumo:
The introduction of casemix funding for Australian acute health care services has challenged Social Work to demonstrate clear reporting mechanisms, demonstrate effective practice and to justify interventions provided. The term 'casemix' is used to describe the mix and type of patients treated by a hospital or other health care services. There is wide acknowledgement that the procedure-based system of Diagnosis Related Groupings (DRGs) is grounded in a medical/illness perspective and is unsatisfactory in describing and predicting the activity of Social Work and other allied health professions in health care service delivery. The National Allied Health Casemix Committee was established in 1991 as the peak body to represent allied health professions in matters related to casemix classification. This Committee has pioneered a nationally consistent, patient-centred information system for allied health. This paper describes the classification systems and codes developed for Social Work, which includes a minimum data set, a classification hierarchy, the set of activity (input) codes and 'indicator for intervention' codes. The advantages and limitations of the system are also discussed.
Resumo:
Evaluation of intermolecular interactions in terms of both experimental and theoretical charge density analyses has produced a unified picture with which to classify strong and weak hydrogen bonds, along with van der Waals interactions, into three regions.
Resumo:
Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Resumo:
This paper aims at evaluating the methods of multiclass support vector machines (SVMs) for effective use in distance relay coordination. Also, it describes a strategy of supportive systems to aid the conventional protection philosophy in combating situations where protection systems have maloperated and/or information is missing and provide selective and secure coordinations. SVMs have considerable potential as zone classifiers of distance relay coordination. This typically requires a multiclass SVM classifier to effectively analyze/build the underlying concept between reach of different zones and the apparent impedance trajectory during fault. Several methods have been proposed for multiclass classification where typically several binary SVM classifiers are combined together. Some authors have extended binary SVM classification to one-step single optimization operation considering all classes at once. In this paper, one-step multiclass classification, one-against-all, and one-against-one multiclass methods are compared for their performance with respect to accuracy, number of iterations, number of support vectors, training, and testing time. The performance analysis of these three methods is presented on three data sets belonging to training and testing patterns of three supportive systems for a region and part of a network, which is an equivalent 526-bus system of the practical Indian Western grid.
Resumo:
In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Resumo:
A new classification and linear sequence of the gymnosperms based on previous molecular and morphological phylogenetic and other studies is presented. Currently accepted genera are listed for each family and arranged according to their (probable) phylogenetic position. A full synonymy is provided, and types are listed for accepted genera. An index to genera assists in easy access to synonymy and family placement of genera.
Resumo:
Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.