938 resultados para High-throughput screening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to describe the development of application of mass spectrometry for the structural analyses of non-coding ribonucleic acids during past decade. Mass spectrometric methods are compared of traditional gel electrophoretic methods, the characteristics of performance of mass spectrometric, analyses are studied and the future trends of mass spectrometry of ribonucleic acids are discussed. Non-coding ribonucleic acids are short polymeric biomolecules which are not translated to proteins, but which may affect the gene expression in all organisms. Regulatory ribonucleic acids act through transient interactions with key molecules in signal transduction pathways. Interactions are mediated through specific secondary and tertiary structures. Posttranscriptional modifications in the structures of molecules may introduce new properties to the organism, such as adaptation to environmental changes or development of resistance to antibiotics. In the scope of this study, the structural studies include i) determination of the sequence of nucleobases in the polymer chain, ii) characterisation and localisation of posttranscriptional modifications in nucleobases and in the backbone structure, iii) identification of ribonucleic acid-binding molecules and iv) probing of higher order structures in the ribonucleic acid molecule. Bacteria, archaea, viruses and HeLa cancer cells have been used as target organisms. Synthesised ribonucleic acids consisting of structural regions of interest have been frequently used. Electrospray ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have been used for ionisation of ribonucleic analytes. Ammonium acetate and 2-propanol are common solvents for ESI. Trihydroxyacetophenone is the optimal MALDI matrix for ionisation of ribonucleic acids and peptides. Ammonium salts are used in ESI buffers and MALDI matrices as additives to remove cation adducts. Reverse phase high performance liquid chromatography has been used for desalting and fractionation of analytes either off-line of on-line, coupled with ESI source. Triethylamine and triethylammonium bicarbonate are used as ion pair reagents almost exclusively. Fourier transform ion cyclotron resonance analyser using ESI coupled with liquid chromatography is the platform of choice for all forms of structural analyses. Time-of-flight (TOF) analyser using MALDI may offer sensitive, easy-to-use and economical solution for simple sequencing of longer oligonucleotides and analyses of analyte mixtures without prior fractionation. Special analysis software is used for computer-aided interpretation of mass spectra. With mass spectrometry, sequences of 20-30 nucleotides of length may be determined unambiguously. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Sequencing in conjunction with other structural studies enables accurate localisation and characterisation of posttranscriptional modifications and identification of nucleobases and amino acids at the sites of interaction. High throughput screening methods for RNA-binding ligands have been developed. Probing of the higher order structures has provided supportive data for computer-generated three dimensional models of viral pseudoknots. In conclusion. mass spectrometric methods are well suited for structural analyses of small species of ribonucleic acids, such as short non-coding ribonucleic acids in the molecular size region of 20-30 nucleotides. Structural information not attainable with other methods of analyses, such as nuclear magnetic resonance and X-ray crystallography, may be obtained with the use of mass spectrometry. Sequencing may be applied to quality control of short synthetic oligomers for analytical purposes. Ligand screening may be used in the search of possible new therapeutic agents. Demanding assay design and challenging interpretation of data requires multidisclipinary knowledge. The implement of mass spectrometry to structural studies of ribonucleic acids is probably most efficiently conducted in specialist groups consisting of researchers from various fields of science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, two-dimensional (2D) cell culture has been the preferred method of producing disease models in vitro. Recently, there has been a move away from 2D culture in favor of generating three-dimensional (3D) multicellular structures, which are thought to be more representative of the in vivo environment. This transition has brought with it an influx of technologies capable of producing these structures in various ways. However, it is becoming evident that many of these technologies do not perform well in automated in vitro drug discovery units. We believe that this is a result of their incompatibility with high-throughput screening (HTS). In this study, we review a number of technologies, which are currently available for producing in vitro 3D disease models. We assess their amenability with high-content screening and HTS and highlight our own work in attempting to address many of the practical problems that are hampering the successful deployment of 3D cell systems in mainstream research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FadD32, a fatty acyl-AMP ligase (FAAL32) involved in the biosynthesis of mycolic acids, major and specific lipid components of the mycobacterial cell envelope, is essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein catalyzes the conversion of fatty acid to acyl-adenylate (acyl-AMP) in the presence of adenosine triphosphate and is conserved in all the mycobacterial species sequenced so far, thus representing a promising target for the development of novel antituberculous drugs. Here, we describe the optimization of the protein purification procedure and the development of a high-throughput screening assay for FadD32 activity. This spectrophotometric assay measuring the release of inorganic phosphate was optimized using the Mycobacterium smegmatis FadD32 as a surrogate enzyme. We describe the use of Tm (melting temperature) shift assay, which measures the modulation of FadD32 thermal stability, as a tool for the identification of potential ligands and for validation of compounds as inhibitors. Screening of a selected library of compounds led to the identification of five novel classes of inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-throughput screening system for secondary catalyst libraries has been developed by incorporation of an 80-pass reactor and a quantified multistream mass spectrometer screening (MSMSS) technique. With a low-melting alloy as the heating medium, a uniform reaction temperature could be obtained in the multistream reactor (maximum temperature differences are less than 1 K at 673 K). Quantification of the results was realized by combination of a gas chromatogram with the MSMSS, which could provide the product selectivities of each catalyst in a heterogeneous catalyst library. Because the catalyst loading of each reaction tube is comparable to that of the conventional microreaction system and because the parallel reactions could be operated under identical conditions (homogeneous temperature, same pressure and WHSV), the reaction results of a promising catalyst selected from the library could be reasonably applied to the further scale-up of the system. The aldol condensation of acetone, with obvious differences in the product distribution over different kind of catalysts, was selected as a model reaction to validate the screening system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-throughput screening is a promising new approach in analytical chemistry. Within the framework of an extended screening program (The German-Chinese Drug Screening Program), the enantioseparation of 86 drugs was investigated by capillary zone electrophoresis in the presence of the chiral solvating agent (CSA) octakis-(2,3,6-tri-O-methyl)-gamma-cyclodextrin (TM-gamma-CD). By this means, 15 drugs could be separated into enantiomeric pairs. Approximate measures for the degree of interaction (migration retardation factor, R-m) and for the degree of enantiomer recognition (migration separation factors, alpha(m)) revealed intriguing patterns that were compared with those found for native gamma-cyclodextrin (gamma-CD). Although there is a distinct influence of the analyte structure on the electrophoretic data, interpretation remains difficult. Most remarkably, permethylation of gamma-CD leads neither to a higher affinity nor to better chiral recognition, in contrast to the findings with alpha-CD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enzyme responsive nanoparticle system that uses a DNA-gold nanoparticle (AuNP) assembly as the substrate has been developed for the simple, sensitive, and universal monitoring of restriction endonucleases in real time. This new assay takes advantage of the palindromic recognition sequence of the restriction nucleases and the unique optical properties of AuNPs and is simpler than the procedure previously described by by Xu et al. (Angew. Chem. Int. Ed. Engl. 2007, 46, 3468-3470). Because it involves only one type of ssDNA modified AuNPs, this assay can be directed toward most of the endonucleases by simply changing the recognition sequence found within the linker DNA. In addition, the endonuclease activity could be quantitatively analyzed by the value of the reciprocal of hydrolysis half time (t(1/2)(-1). Furthermore, our new design could also be applied to the assay of methyltransferase activity since the methylation of DNA inhibits its cleavage by the corresponding restriction endonuclease, and thus, this new methodology can be easily adapted to high-throughput screening of methyltransferase inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Ni-promoted ligand-free palladium catalyst system for Suzuki coupling of aryl bromides has been developed in high efficiency under mild reaction conditions. It was obtained in situ by introducing NiCl2 to PdCl2/PVP using a parallel high-throughput screening technique. A wide range of aryl bromides bearing a variety of functional groups was evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global rise in antibiotic resistance is a significant problem facing healthcare professionals. In particular within the cystic fibrosis (CF) lung, bacteria can establish chronic infection and resistance to a wide array of antibiotic therapies. One of the principle pathogens associated with chronic infection in the CF lung is Pseudomonas aeruginosa. P. aeruginosa can establish chronic infection in the CF lung partly through the use of the biofilm mode of growth. This biofilm mode of growth offers a considerable degree of protection from a wide variety of challenges such as the host immune system or antibiotic therapy. The threat posed by the emergence of chronic pathogens is prompting the development of next generation antimicrobials. The biofilm mode of growth is often central to the establishment of chronic infection and the development of antibiotic resistance. Thus, targeting biofilm formation has emerged as one of the principle strategies for the development of next generation antimicrobials. In this thesis two separate approaches were used to identify potential anti - biofilm targets. The first strategy focused on the identification of novel genes with a role in a biofilm formation. High throughput screening identified almost 300 genes which had a role in biofilm formation. A number of these genes were characterised at a phenotypic and a molecular level. The second strategy focused on the identification of compounds capable of inhibiting biofilm formation. A collection of marine sponge isolated bacteria were screened for the ability to inhibit the central pathway regulating biofilm formation, quorum sensing. A number of distinct isolates were identified that had quorum sensing inhibition activity from which, a Pseudomonas isolate was selected for further characterisation. A specific compound capable of inhibiting quorum sensing was identified using chemical analytical technologies in the supernatant of this marine isolate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of recombinant antibodies (Abs) using phage display is a proven method to obtain a large variety of Abs that bind with high affinity to a given antigen. Traditionally, the generation of single-chain Abs depends on the use of recombinant proteins in several stages of the procedure. This can be a problem, especially in the case of cell-surface receptors, because Abs generated and selected against recombinant proteins may not bind the same protein expressed on a cell surface in its native form and because the expression of some receptors as recombinant proteins is problematic. To overcome these difficulties, we developed a strategy to generate single-chain Abs that does not require the use of recombinant protein at any stage of the procedure. In this strategy, stably transfected cells are used for the immunization of mice, measuring Ab responses to immunization, panning the phage library, high-throughput screening of arrayed phage clones, and characterization of recombinant single-chain variable regions. This strategy was used to generate a panel of single-chain Abs specific for the innate immunity receptor Toll-like receptor 2. Once generated, individual single-chain variable regions were subcloned into an expression vector allowing the production of recombinant Abs in insect cells, thus avoiding the contamination of recombinant Abs with microbial products. This cell-based system efficiently generates Abs that bind to native molecules on the cell surface, bypasses the requirement of recombinant protein production, and avoids risks of microbial component contamination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sudan dyes have been found to be added to chilli and chilli products for illegal colour enhancement purposes. Due to the possible carcinogenic effect, they are not authorized to be used in food in the European Union or the USA. However, over the last few years, many products imported from Asian and African countries have been reported via the Rapid Alert System for Food and Feed in the European Union to be contaminated with these dyes. In order to provide fast screening method for the detection of Sudan I (SI), which is the most widely abused member of Sudan dyes family, a unique (20 min without sample preparation) direct disequilibrium enzyme-linked immunosorbent assay (ELISA) was developed. The assay was based on polyclonal antibodies highly specific to SI. A novel, simple gel permeation chromatography clean-up method was developed to purify extracts from matrices containing high amounts of fat and natural pigments, without the need for a large dilution of the sample. The assay was validated according to the Commission Decision 2002/657/EC criteria. The detection capability was determined to be 15 ng g(-1) in sauces and 50 ng g(-1) in spices. The recoveries found ranged from 81% to 116% and inter- and intra-assay coefficients of variation from 6% to 20%. The assay was used to screen a range of products (85 samples) collected from different retail sources within and outside the European Union. Three samples were found to contain high amounts (1,649, 722 and 1,461 ng g(-1)) of SI by ELISA. These results were confirmed by liquid chromatography-tandem mass spectrometry method. The innovative procedure allows for the fast, sensitive and high throughput screening of different foodstuffs for the presence of the illegal colorant SI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of growth-promoter use in animal production systems still proves to be an analytical challenge despite years of activity in the field. This study reports on the capability of NMR metabolomic profiling techniques to discriminate between plasma samples obtained from cattle treated with different groups of growth-promoting hormones (dexamethasone, prednisolone, oestradiol) based on recorded metabolite profiles. Two methods of NMR analysis were investigated—a Carr–Purcell–Meiboom–Gill (CPMG)-pulse sequence technique and a conventional 1H NMR method using pre-extracted plasma. Using the CPMG method, 17 distinct metabolites could be identified from the spectra. 1H NMR analysis of extracted plasma facilitated identification of 23 metabolites—six more than the alternative method and all within the aromatic region. Multivariate statistical analysis of acquired data from both forms of NMR analysis separated the plasma metabolite profiles into distinct sample cluster sets representative of the different animal study groups. Samples from both sets of corticosteroid-treated animals—dexamethasone and prednisolone—were found to be clustered relatively closely and had similar alterations to identified metabolite panels. Distinctive metabolite profiles, different from those observed within plasma from corticosteroid-treated animal plasma, were observed in oestradiol-treated animals and samples from these animals formed a cluster spatially isolated from control animal plasma samples. These findings suggest the potential use of NMR methodologies of plasma metabolite analysis as a high-throughput screening technique to aid detection of growth promoter use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene targeting by microRNAs is important in health and disease. We developed a functional assay for identifying microRNA targets and applied it to the K+ channel Kir2.1 (KCNJ2) which is dysregulated in cardiac and vascular disorders. The 3'UTR was inserted downstream of the mCherry red fluorescent protein coding sequence in a mammalian expression plasmid. MicroRNA sequences were inserted into the pSM30 expression vector which provides enhanced green fluorescent protein as an indicator of microRNA expression. HEK293 cells were co-transfected with the mCherry-3'UTR plasmid and a pSM30-based plasmid with a microRNA insert. The principle of the assay is that functional targeting of the 3'UTR by the microRNA results in a decrease in the red/green fluorescence intensity ratio as determined by automated image analysis. The method was validated with miR-1, a known downregulator of Kir2.1 expression, and was used to investigate targeting of the Kir2.1 3'UTR by miR-212. Red/green ratio was lower in miR-212-expressing cells compared to non-targeting controls, an effect that was attenuated by mutating the predicted target site. MiR-212 also reduced inward rectifier current and Kir2.1 protein in HeLa cells. This novel assay has several advantages over traditional luciferase-based assays including larger sample size, amenability to time course studies and adaptability to high-throughput screening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to chemotherapy and molecularly targeted therapies is a major problem facing current cancer research. The mechanisms of resistance to 'classical' cytotoxic chemotherapeutics and to therapies that are designed to be selective for specific molecular targets share many features, such as alterations in the drug target, activation of prosurvival pathways and ineffective induction of cell death. With the increasing arsenal of anticancer agents, improving preclinical models and the advent of powerful high-throughput screening techniques, there are now unprecedented opportunities to understand and overcome drug resistance through the clinical assessment of rational therapeutic drug combinations and the use of predictive biomarkers to enable patient stratification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maioria das funções celulares, incluindo expressão de genes, crescimento e proliferação celulares, metabolismo, morfologia, motilidade, comunicação intercelular e apoptose, é regulada por interações proteína-proteína (IPP). A célula responde a uma variedade de estímulos, como tal a expressão de proteínas é um processo dinâmico e os complexos formados são constituídos transitoriamente mudando de acordo com o seu ciclo funcional, adicionalmente, muitas proteínas são expressas de uma forma dependente do tipo de célula. Em qualquer instante a célula pode conter cerca de centenas de milhares de IPPs binárias, e encontrar os companheiros de interação de uma proteína é um meio de inferir a sua função. Alterações em redes de IPP podem também fornecer informações acerca de mecanismos de doença. O método de identificação binário mais frequentemente usado é o sistema Dois Hibrido de Levedura, adaptado para rastreio em larga escala. Esta metodologia foi aqui usada para identificar os interactomas específicos de isoforma da Proteína Fosfatase 1 (PP1), em cérebro humano. A PP1 é uma proteína fosfatase de Ser/Thr envolvida numa grande variedade de vias e eventos celulares. É uma proteína conservada codificada por três genes, que originam as isoformas α, β, e γ, com a última a originar γ1 e γ2 por splicing alternativo. As diferentes isoformas da PP1 são reguladas pelos companheiros de interação – proteínas que interagem com a PP1 (PIPs). A natureza modular dos complexos da PP1, bem como a sua associação combinacional, gera um largo reportório de complexos reguladores e papéis em circuitos de sinalização celular. Os interactomas da PP1 específicos de isofoma, em cérebro, foram aqui descritos, com um total de 263 interações identificadas e integradas com os dados recolhidos de várias bases de dados de IPPs. Adicionalmente, duas PIPs foram selecionadas para uma caracterização mais aprofundada da interação: Taperina e Sinfilina-1A. A Taperina é uma proteína ainda pouco descrita, descoberta recentemente como sendo uma PIP. A sua interação com as diferentes isoformas da PP1 e localização celulares foram analisadas. Foi descoberto que a Taperina é clivada e que está presente no citoplasma, membrana e núcleo e que aumenta os níveis de PP1, em células HeLa. Na membrana ela co-localiza com a PP1 e a actina e uma forma mutada da Taperina, no motivo de ligação à PP1, está enriquecida no núcleo, juntamente com a actina. Mais, foi descoberto que a Taperina é expressa em testículo e localiza-se na região acrossómica da cabeça do espermatozoide, uma estrutura onde a PP1 e a actina estão também presentes. A Sinfilina-1A, uma isoforma da Sinfilina-1, é uma proteína com tendência para agregar e tóxica, envolvida na doença de Parkinson. Foi mostrado que a Sinfilina-1A liga às isoformas da PP1, por co-transformação em levedura, e que mutação do seu motivo de ligação à PP1 diminuiu significativamente a interação, num ensaio de overlay. Quando sobre-expressa em células Cos-7, a Sinfilina-1A formou corpos de inclusão onde a PP1 estava presente, no entanto a forma mutada da Sinfilina-1A também foi capaz de agregar, indicando que a formação de inclusões não foi dependente de ligação à PP1. Este trabalho dá uma nova perspetiva dos interactomas da PP1, incluindo a identificação de dezenas de companheiros de ligação específicos de isoforma, e enfatiza a importância das PIPs, não apenas na compreensão das funções celulares da PP1 mas também, como alvos de intervenção terapêutica.