925 resultados para High-dose fentanyl


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Davison, G. and Gleeson, M. (2005). Influence of Acute Vitamin C and/or Carbohydrate Ingestion on Hormonal, Cytokine, and Immune Responses to Prolonged Exercise. International Journal of Sport Nutrition and Exercise Metabolism. 15(5), pp.465-479 RAE2008

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on a heart-lung transplant recipient who presented with pulmonary tuberculosis (TB) 2.5 months after transplantation and then developed a paradoxical reaction after 4 months of adequate anti-TB treatment. She eventually recovered with anti-TB and high-dose steroid treatments. METHODS: Using sequential bronchoalveolar lavages, we assessed the inflammatory response in the lung and investigated the alveolar immune response against a Mycobacterium tuberculosis antigen. RESULTS: The paradoxical reaction was characterized by a massive infiltration of the alveolar space by M. tuberculosis antigen-specific CD4(+) T cells and by the presence of a CD4(-)CD8(-) T lymphocyte subpopulation bearing phenotypic markers (CD16(+)/56(+)) classically associated with NK cells. CONCLUSION: This case report illustrates that even solid organ transplant recipients receiving intense triple-drug immune suppression may be able to develop a paradoxical reaction during TB treatment. Transplant physicians should be aware of this phenomenon in order to differentiate it from treatment failure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.

In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.

Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.

For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.

For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.

Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Echovirus meningoencephalitis and polymyositis are classical complications of X-linked agammaglobulinemia (1). The treatment of meningoencephalitis is troublesome since intravenous (2), intrathecal (3) and intraventricular (4) administration of gammaglobulins have been reported successful, but failure also occurred in some cases (5). We report our experience of high dose intravenous treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To describe the clinical implementation of dynamic multileaf collimation (DMLC). Custom compensated four-field treatments of carcinoma of the bladder have been used as a simple test site for the introduction of intensity modulated radiotherapy.MATERIALS AND METHODS: Compensating intensity modulations are calculated from computed tomography (CT) data, accounting for scattered, as well as primary radiation. Modulations are converted to multileaf collimator (MLC) leaf and jaw settings for dynamic delivery on a linear accelerator. A full dose calculation is carried out, accounting for dynamic leaf and jaw motion and transmission through these components. Before treatment, a test run of the delivery is performed and an absolute dose measurement made in a water or solid water phantom. Treatments are verified by in vivo diode measurements and real-time electronic portal imaging. RESULTS: Seven patients have been treated using DMLC. The technique improves dose homogeneity within the target volume, reducing high dose areas and compensating for loss of scatter at the beam edge. A typical total treatment time is 20 min. CONCLUSIONS: Compensated bladder treatments have proven an effective test site for DMLC in an extremely busy clinic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary Bortezomib (formerly PS-341) has significant activity in patients with relapsed multiple myeloma (MM), its efficacy is increased with the addition of dexamethasone and it demonstrates synergy with doxorubicin, thus providing the rationale for combination therapy with bortezomib, doxorubicin and dexamethasone (PAD). Patients with untreated MM received four 21-d cycles of PAD, comprising bortezomib 1·3 mg/m2 on days 1, 4, 8 and 11, along with dexamethasone 40 mg on days 1–4, 8–11 and 15–18 during cycle 1 and days 1–4 during cycles 2–4. During days 1–4, patients also received 0, 4·5 or 9 mg/m2 of doxorubicin at dose levels 1, 2, and 3 respectively. Following peripheral blood stem cell (PBSC) collection, patients received high-dose melphalan (MEL200) with PBSC transplantation (PBSCT). After PAD induction alone, 20 of 21 patients (95%) achieved at least a partial response (PR), including complete response (CR) in five patients (24%). Twenty of 21 had PBSC mobilized, and 18 of 20 received MEL200/PBSCT. In an intention-to-treat analysis, response rates were: CR 43%, near CR 14%, very good PR 24%, PR 14% and stable disease 5%. PAD was effective, did not prejudice subsequent PBSC collection, and should be further evaluated in prospective randomized trials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current understanding of risk associated with low-dose radiation exposure has for many years been embedded in the linear-no-threshold (LNT) approach, based on simple extrapolation from the Japanese atomic bomb survivors. Radiation biology research has supported the LNT approach although much of this has been limited to relatively high-dose studies. Recently, with new advances for studying effects of low-dose exposure in experimental models and advances in molecular and cellular biology, a range of new effects of biological responses to radiation has been observed. These include genomic instability, adaptive responses and bystander effects. Most have one feature in common in that they are observed at low doses and suggest significant non-linear responses. These new observations pose a significant challenge to our understanding of low-dose exposure and require further study to elucidate mechanisms and determine their relevance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Current guidelines encourage the use of statins to reduce the risk of cardiovascular disease in diabetic patients; however the impact of these drugs on diabetic retinopathy is not well defined. Moreover, pleiotropic effects of statins on the highly specialised retinal microvascular endothelium remain largely unknown. The objective of this study was to investigate the effects of clinically relevant concentrations of simvastatin on retinal endothelium in vitro and in vivo.

Methods and Findings: Retinal microvascular endothelial cells (RMECs) were treated with 0.01–10 µM simvastatin and a biphasic dose-related response was observed. Low concentrations enhanced microvascular repair with 0.1 µM simvastatin significantly increasing proliferation (p<0.05), and 0.01 µM simvastatin significantly promoting migration (p<0.05), sprouting (p<0.001), and tubulogenesis (p<0.001). High concentration of simvastatin (10 µM) had the opposite effect, significantly inhibiting proliferation (p<0.01), migration (p<0.01), sprouting (p<0.001), and tubulogenesis (p<0.05). Furthermore, simvastatin concentrations higher than 1 µM induced cell death. The mouse model of oxygen-induced retinopathy was used to investigate the possible effects of simvastatin treatment on ischaemic retinopathy. Low dose simvastatin(0.2 mg/Kg) promoted retinal microvascular repair in response to ischaemia by promoting intra-retinal re-vascularisation (p<0.01). By contrast, high dose simvastatin(20 mg/Kg) significantly prevented re-vascularisation (p<0.01) and concomitantly increased pathological neovascularisation (p<0.01). We also demonstrated that the pro-vascular repair mechanism of simvastatin involves VEGF stimulation, Akt phosphorylation, and nitric oxide production; and the anti-vascular repair mechanism is driven by marked intracellular cholesterol depletion and related disorganisation of key intracellular structures.

Conclusions: A beneficial effect of low-dose simvastatin on ischaemic retinopathy is linked to angiogenic repair reducing ischaemia, thereby preventing pathological neovascularisation. High-dose simvastatin may be harmful by inhibiting reparative processes and inducing premature death of retinal microvascular endothelium which increases ischaemia-induced neovascular pathology. Statin dosage should be judiciously monitored in patients who are diabetic or are at risk of developing other forms of proliferative retinopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measles virus (MV) is highly infectious, and has long been thought to enter the host by infecting epithelial cells of the respiratory tract. However, epithelial cells do not express signaling lymphocyte activation molecule (CD150), which is the high-affinity cellular receptor for wild-type MV strains. We have generated a new recombinant MV strain expressing enhanced green fluorescent protein (EGFP), based on a wild-type genotype B3 virus isolate from Khartoum, Sudan (KS). Cynomolgus macaques were infected with a high dose of rMV(KS)EGFP by aerosol inhalation to ensure that the virus could reach the full range of potential target cells throughout the entire respiratory tract. Animals were euthanized 2, 3, 4 or 5 days post-infection (d.p.i., n?=?3 per time point) and infected (EGFP(+)) cells were identified at all four time points, albeit at low levels 2 and 3 d.p.i. At these earliest time points, MV-infected cells were exclusively detected in the lungs by fluorescence microscopy, histopathology and/or virus isolation from broncho-alveolar lavage cells. On 2 d.p.i., EGFP(+) cells were phenotypically typed as large mononuclear cells present in the alveolar lumen or lining the alveolar epithelium. One to two days later, larger clusters of MV-infected cells were detected in bronchus-associated lymphoid tissue (BALT) and in the tracheo-bronchial lymph nodes. From 4 d.p.i. onward, MV-infected cells were detected in peripheral blood and various lymphoid tissues. In spite of the possibility for the aerosolized virus to infect cells and lymphoid tissues of the upper respiratory tract, MV-infected cells were not detected in either the tonsils or the adenoids until after onset of viremia. These data strongly suggest that in our model MV entered the host at the alveolar level by infecting macrophages or dendritic cells, which traffic the virus to BALT or regional lymph nodes, resulting in local amplification and subsequent systemic dissemination by viremia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bystander effects, whereby cells that are not directly exposed to ionizing radiation exhibit adverse biological effects, have been observed in a number of experimental systems. A novel stochastic model of the radiation-induced bystander effect is developed that takes account of spatial location, cell killing and repopulation. The ionizing radiation dose- and time-responses of this model are explored, and it is shown to exhibit pronounced downward curvature in the high dose-rate region, similar to that observed in many experimental systems, reviewed in the paper. It is also shown to predict the augmentation of effect after fractionated delivery of dose that has been observed in certain experimental systems. It is shown that the generally intractable solution of the full stochastic system can be considerably simplified by assumption of pairwise conditional dependence that varies exponentially over time. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: To investigate the pharmacokinetics (PK) of maraviroc, a CCR5-targeted HIV-1 entry inhibitor, in rhesus macaques following vaginal administration of various maraviroc-loaded aqueous hydroxyethylcellulose (HEC) gels, and to correlate the PK data with efficacy in a single high-dose vaginal SHIV-162P3 challenge model.

Methods: Maraviroc concentrations in vaginal fluid (Weck-Cel® sponge), vaginal tissue (punch biopsy) and plasma were assessed over 72 h following single dose vaginal application of various maraviroc-loaded HEC gels. The range of maraviroc gel concentrations was sufficiently broad (0.003 – 3.3% w/w) such that test gels included both fully solubilised and predominantly dispersed formulations. The efficacy of the HEC gels against a single high dose vaginal SHIV-162P3 challenge was also measured, and correlated with the PK concentrations.

Results: Maraviroc concentrations in vaginal fluid (range 104 – 107 ng/mL), vaginal tissue (100-1200 ng/g) and plasma (< 102 ng/mL) were highly dependent on maraviroc gel loading, irrespective of the form of the maraviroc component within the gel (solubilised vs. dispersed). Fluid and plasma concentrations were generally highest 0.5 or 2 h after gel application, before declining steadily out to 72 h. Maraviroc concentrations in the various biological compartments correlated strongly with the extent of protection against vaginal SHIV-162P3 challenge. Complete protection was achieved with a 3.3% w/w maraviroc gel.

Conclusions: A high degree of correlation between PK and efficacy was observed. Based on the data obtained with the 3.3% w/w maraviroc gel, maintenance of vaginal fluid and tissue levels in the order of 107 ng/mL and 103 ng/g, respectively, are required for complete protection with this compound.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study compared high dose ranitidine versus low dose omeprazole with antibiotics for the eradication of H pylori. 80 patients (mean age 48 years, range 18-75) who had H pylori infection were randomised in an investigator-blind manner to either a two-week regime of omeprazole 20 mg daily, amoxycillin 500 mg tid and metronidazole 400 mg tid (OAM), or ranitidine 600 mg bd, amoxycillin 500 mg tid and metronidazole 400 mg tid (RAM), or omeprazole 20 mg daily and clarithromycin 500 mg tid (OC), or omeprazole 20 mg daily and placebo (OP). H pylori was eradicated in 6 of 19 patients in the OAM group (32%); 8 of 18 in the RAM group (44%), 4 of 15 in the OC group (27%); none of 18 in the OP group (0%). [<P0.005 for OAM, RAM, OC vs OP; P = N.S. between OAM, RAM, OC]. Overall metronidazole resistance was unexpectedly high at 58%. Eradication rates in metronidazole sensitive patients were 71% (5/7) and 100% (3/3) for OAM and RAM respectively. In conclusion, H pylori eradication rates using high dose ranitidine plus amoxycillin and metronidazole may be similar to that of low dose omeprazole in combination with the same antibiotics for omeprazole with clarithromycin. Overall eradication rates were low due to a high incidence of metronidazole resistance but were higher in metronidazole-sensitive patients. Even high dose ranitidine with two antibiotics achieves a relatively low eradication rate. These metronidazole-based regimens cannot be recommended in areas with a high incidence of metronidazole resistance.