890 resultados para Hierarchical Linear Modelling
Resumo:
Aims The aim of this cross sectional study is to explore levels of physical activity and sitting behaviour amongst a sample of pregnant Australian women (n = 81), and investigate whether reported levels of physical activity and/or time spent sitting were associated with depressive symptom scores after controlling for potential covariates. Methods Study participants were women who attended the antenatal clinic of a large Brisbane maternity hospital between October and November 2006. Data relating to participants. current levels of physical activity, sitting behaviour, depressive symptoms, demographic characteristics and exposure to known risk factors for depression during pregnancy were collected; via on-site survey, follow-up telephone interview (approximately one week later) and post delivery access to participant hospital records. Results Participants were aged 29.5 (¡¾ 5.6) years and mostly partnered (86.4%) with a gross household income above $26,000 per annum (88.9%). Levels of physical activity were generally low, with only 28.4 % of participants reporting sufficient total activity and 16% of participants reporting sufficient planned (leisure-time) activity. The sample mean for depressive symptom scores measured by the Hospital Anxiety and Depression Scale (HADS-D) was 6.38 (¡¾ 2.55). The mean depressive symptom scores for participants who reported total moderate-to-vigorous activity levels of sufficient, insufficient, and none, were 5.43 (¡¾ 1.56), 5.82 (¡¾ 1.77) and 7.63 (¡¾ 3.25), respectively. Hierarchical multivariable linear regression modelling indicated that after controlling for covariates, a statistically significant difference of 1.09 points was observed between mean depressive symptom scores of participants who reported sufficient total physical activity, compared with participants who reported they were engaging in no moderate-to-vigorous activity in a typical week (p = 0.05) but this did not reach the criteria for a clinically meaningful difference. Total physical activity was contributed 2.2% to the total 30.3% of explained variance within this model. The other main contributors to explained variance in multivariable regression models were anxiety symptom scores and the number of existing children. Further, a trend was observed between higher levels of planned sitting behaviour and higher depressive symptom scores (p = 0.06); this correlation was not clinically meaningful. Planned sitting contributed 3.2% to the total 31.3 % of explained variance. The number of regression covariates and limited sample size led to a less than ideal ratio of covariates to participants, probably attenuating this relationship. Specific information about the sitting-based activities in which participants engaged may have provided greater insight about the relationship between planned sitting and depressive symptoms, but these data were not captured by the present study. Conclusions The finding that higher levels of physical activity were associated with lower levels of depressive symptoms is consistent with the current body of existing literature in pregnant women, and with a larger body of evidence based in general population samples. Although this result was not considered clinically meaningful, the criterion for a clinically meaningful result was an a priori decision based on quality of life literature in non-pregnant populations and may not truly reflect a difference in symptoms that is meaningful to pregnant women. Further investigation to establish clinically meaningful criteria for continuous depressive symptom data in pregnant women is required. This result may have implications relating to prevention and management options for depression during pregnancy. The observed trend between planned sitting and depressive symptom scores is consistent with literature based on leisure-time sitting behaviour in general population samples, and suggests that further research in this area, with larger samples of pregnant women and more specific sitting data is required to explore potential associations between activities such as television viewing and depressive symptoms, as this may be an area of behaviour that is amenable to modification.
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
Traditional crash prediction models, such as generalized linear regression models, are incapable of taking into account the multilevel data structure, which extensively exists in crash data. Disregarding the possible within-group correlations can lead to the production of models giving unreliable and biased estimates of unknowns. This study innovatively proposes a -level hierarchy, viz. (Geographic region level – Traffic site level – Traffic crash level – Driver-vehicle unit level – Vehicle-occupant level) Time level, to establish a general form of multilevel data structure in traffic safety analysis. To properly model the potential cross-group heterogeneity due to the multilevel data structure, a framework of Bayesian hierarchical models that explicitly specify multilevel structure and correctly yield parameter estimates is introduced and recommended. The proposed method is illustrated in an individual-severity analysis of intersection crashes using the Singapore crash records. This study proved the importance of accounting for the within-group correlations and demonstrated the flexibilities and effectiveness of the Bayesian hierarchical method in modeling multilevel structure of traffic crash data.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
A new dualscale modelling approach is presented for simulating the drying of a wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of wood at low temperatures and is valid in the so-called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the microscopic field using suitably-defined periodic boundary conditions, which allows the macroscopic mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale but reduces to a classical homogenisation approach if a linear relationship is assumed between the microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential and flexibility of the new dual-scale approach. In particular, for a given unit cell configuration it is not necessary to propose the form of the macroscopic fluxes prior to the simulations because these are determined as a direct result of the dual-scale formulation.
Resumo:
Abstract Background The quantum increases in home Internet access and available online health information with limited control over information quality highlight the necessity of exploring decision making processes in accessing and using online information, specifically in relation to children who do not make their health decisions. Objectives To understand the processes explaining parents’ decisions to use online health information for child health care. Methods Parents (N = 391) completed an initial questionnaire assessing the theory of planned behaviour constructs of attitude, subjective norm, and perceived behavioural control, as well as perceived risk, group norm, and additional demographic factors. Two months later, 187 parents completed a follow-up questionnaire assessing their decisions to use online information for their child’s health care, specifically to 1) diagnose and/or treat their child’s suspected medical condition/illness and 2) increase understanding about a diagnosis or treatment recommended by a health professional. Results Hierarchical multiple regression showed that, for both behaviours, attitude, subjective norm, perceived behavioural control, (less) perceived risk, group norm, and (non) medical background were the significant predictors of intention. For parents’ use of online child health information, for both behaviours, intention was the sole significant predictor of behaviour. The findings explain 77% of the variance in parents’ intention to treat/diagnose a child health problem and 74% of the variance in their intentions to increase their understanding about child health concerns. Conclusions Understanding parents’ socio-cognitive processes that guide their use of online information for child health care is important given the increase in Internet usage and the sometimes-questionable quality of health information provided online. Findings highlight parents’ thirst for information; there is an urgent need for health professionals to provide parents with evidence-based child health websites in addition to general population education on how to evaluate the quality of online health information.
Resumo:
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and coworkers rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single–species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalise the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications including the analysis of models describing coupled chemical decay and cell differentiation processes, amongst others.
Resumo:
This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.
Resumo:
The R statistical environment and language has demonstrated particular strengths for interactive development of statistical algorithms, as well as data modelling and visualisation. Its current implementation has an interpreter at its core which may result in a performance penalty in comparison to directly executing user algorithms in the native machine code of the host CPU. In contrast, the C++ language has no built-in visualisation capabilities, handling of linear algebra or even basic statistical algorithms; however, user programs are converted to high-performance machine code, ahead of execution. A new method avoids possible speed penalties in R by using the Rcpp extension package in conjunction with the Armadillo C++ matrix library. In addition to the inherent performance advantages of compiled code, Armadillo provides an easy-to-use template-based meta-programming framework, allowing the automatic pooling of several linear algebra operations into one, which in turn can lead to further speedups. With the aid of Rcpp and Armadillo, conversion of linear algebra centered algorithms from R to C++ becomes straightforward. The algorithms retains the overall structure as well as readability, all while maintaining a bidirectional link with the host R environment. Empirical timing comparisons of R and C++ implementations of a Kalman filtering algorithm indicate a speedup of several orders of magnitude.
Resumo:
This chapter represents the analytical solution of two-dimensional linear stretching sheet problem involving a non-Newtonian liquid and suction by (a) invoking the boundary layer approximation and (b) using this result to solve the stretching sheet problem without using boundary layer approximation. The basic boundary layer equations for momentum, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The results reveal a new analytical procedure for solving the boundary layer equations arising in a linear stretching sheet problem involving a non-Newtonian liquid (Walters’ liquid B). The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem.
Resumo:
Research in construction innovation highlights construction industry as having many barriers and resistance to innovations and suggests that it needs champions. A hierarchical structural model is presented, to assess the impact of the role of the project manager (PM) on the levels of innovation and project performance. The model adopts the structural equation modelling technique and uses the survey data collected from PMs and project team members working for general contractors in Singapore. The model fits well to the observed data, accounting for 24%, 37% and 49% of the variance in championing behaviour, the level of innovation and project performance, respectively. The results of this study show the importance of the championing role of PMs in construction innovation. However, in order to increase their effectiveness, such a role should be complemented by their competency and professionalism, tactical use of influence tactics, and decision authority. Moreover, senior management should provide adequate resources and a sustained support to innovation and create a conducive environment or organizational culture that nurtures and facilitates the PM’s role in the construction project as a champion of innovation.
Resumo:
The mechanisms of force generation and transference via microfilament networks are crucial to the understandings of mechanobiology of cellular processes in living cells. However, there exists an enormous challenge for all-atom physics simulation of real size microfilament networks due to scale limitation of molecular simulation techniques. Following biophysical investigations of constitutive relations between adjacent globular actin monomers on filamentous actin, a hierarchical multiscale model was developed to investigate the biomechanical properties of microfilament networks. This model was validated by previous experimental studies of axial tension and transverse vibration of single F-actin. The biomechanics of microfilament networks can be investigated at the scale of real eukaryotic cell size (10 μm). This multiscale approach provides a powerful modeling tool which can contribute to the understandings of actin-related cellular processes in living cells.