996 resultados para Helium ground state wavefunction compact
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.
Resumo:
The ion (C2CHC2)(-) is formed in the gas phase by the process -C=C-CH(OCOR)-C=CD --> (C2CHC2)(-) + ('RDCO2') [R = H, Me or Et]; the ground state structure is a singlet, with C-2 nu symmetry.
Resumo:
The ion (C6CH2)(.-) is formed in the gas phase by the process -C=C-C=C-C=CH2OEt --> (C6CH2)(.-) + EtO., and charge stripping of the product radical anion yields the carbenoid neutral C6CH2; this can be either a singlet (the ground state), which is best represented as the carbene :C=C=C=C=C=C=CH2, or a triplet; the adiabatic electron affinity and the dipole moment of the carbenoid neutral are calculated to be 2.82 eV and 7.33 D respectively.
Resumo:
Computations at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G* level of theory indicate that neutral C6CO is a stable species. The ground state of this neutral is the singlet cumulene oxide :C=C=C=C=C=C=C=O. The adiabatic electron affinity and dipole moment of singlet C6CO are 2.47 eV and 4.13 D, respectively, at this level of theory. The anion (C6CO)(-.) should be a possible precursor to this neutral. It has been formed by an unequivocal synthesis in the ion source of a mass spectrometer by the S(N)2(Si) reaction between (CH3)(3)Si-C=C-C=C-C=C-CO-CMe3 and F- to form C-=C-C=C-C=C-CO-CMe3 which loses Me3C in the source to form C6CO-.. Charge stripping of this anion by vertical Franck-Condon oxidation forms C6CO, characterised by the neutralisation-reionisation spectrum (-NR+) of C6CO-., which is stable during the timeframe of this experiment (10(-6) s), Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Small S-T splitting : The photoelectron spectrum of the oxyallyl radical anion (see picture) reveals that the electronic ground state of oxyallyl is singlet, and the lowest triplet state is separated from the singlet state by only (55 ± 2) meV in adiabatic energy.
Resumo:
Ethylenedione C2O2 is one of the elusive small molecules which have remained undetected even after numerous attempts with different experimental techniques, This is surprising, since theoretical studies predicted the triplet state of C2O2 to be stable towards spin-allowed dissociation and hence long-lived. Here we report a comprehensive study of charged and neutral ethylenedione by means of charge reversal and neutralization -reionization mass spectrometry. These experimental results, in conjunction with theoretical calculations, suggest that neutral ethylenedione is intrinsically short-lived rather than being elusive, Both the singlet and triplet states of C2O2 are predicted to dissociate rapidly into two ground-state CO molecules, and for the triplet species, this dissociation involves facile curve-crossing to the singlet surface within a few nanoseconds.
Resumo:
Negative ion photoelectron spectroscopy has been used to study the HCCN- and HCNC- ions. The electron affinities (EA) of cyanocarbene have been measured to be EA(HCCN (X) over tilde (3)Sigma(-)=2.003+/-0.014 eV and EA(DCCN (X) over tilde (3)Sigma(-))=2.009+/-0.020 eV. Photodetachment of HCCN- to HCCN (X) over tilde (3)Sigma(-) shows a 0.4 eV long vibrational progression in nu(5), the H-CCN bending mode; the HCCN- photoelectron spectra reveal excitations up to 10 quanta in nu(5). The term energies for the excited singlet state are found to be T-0(HCCN (a) over tilde (1)A('))=0.515+/-0.016 eV and T-0(DCCN (a) over tilde (1)A('))=0.518+/-0.027 eV. For the isocyanocarbene, the two lowest states switch and HCNC has a singlet ground state and an excited triplet state. The electron affinities are EA(HCNC (X) over tilde (1)A('))=1.883+/-0.013 eV and EA((X) over tilde (1)A(') DCNC)=1.877+/-0.010 eV. The term energy for the excited triplet state is T-0(HCNC (a) over tilde (3)A("))=0.050+/-0.028 eV and T-0(DCNC (a) over tilde (3)A("))=0.063+/-0.030 eV. Proton transfer kinetics in a flowing afterglow apparatus were used to re-measure the enthalpy of deprotonation of CH3NC to be Delta(acid)H(298)(CH3NC)=383.6+/-0.6 kcal mol(-1). The acidity/EA thermodynamic cycle was used to deduce D-0(H-CHCN)=104+/-2 kcal mol(-1) [Delta(f)H(0)(HCCN)=110+/-4 kcal mol(-1)] and D-0(H-CHNC)=106+/-4 kcal mol(-1) [Delta(f)H(0)(HCNC)=133+/-5 kcal mol(-1)]. (C) 2002 American Institute of Physics.
Resumo:
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O center dot-) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states (B-3(2) and B-3(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density, functional theory (DFT). Spectral simulations have been carried out for the triplet statics based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the B-3(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the B-3(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the B-3(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The A, state is the lowest electronic state of,OXA, and the electron affinity (EA) of OXA is 1.940 +/- 0.010 eV. The B-3(2) state is the first excited state with an electronic term energy of 55 +/- 2 meV. The widths of the vibronic peaks of the (X) over tilde (1)A(1) state are much broader than those of the (a) over tilde B-3(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cydopropanone. The simulation of (b) over tilde B-3(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the B-3(1) state is 0.883 +/- 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O center dot- reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the (X) over tilde (3)A '' state of AC. The ground ((2)A '') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.
Resumo:
This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.
Resumo:
A series of Pt(II) diimine complexes bearing benzothiazolylfluorenyl (BTZ-F8), diphenylaminofluorenyl (NPh2- F8), or naphthalimidylfluorenyl (NI-F8) motifs on the bipyridyl or acetylide ligands (Pt-4−Pt-8), (i.e., {4,4′-bis[7-R1-F8-(≡)n-]bpy}Pt(7- R2-F8- ≡ -)2, where F8 = 9,9′-di(2-ethylhexyl)fluorene, bpy = 2,2′- bipyridine, Pt-4: R1 = R2 = BTZ, n = 0; Pt-5: R1 = BTZ, R2 = NI, n = 0; Pt-6: R1 = R2 = BTZ, n = 1; Pt-7: R1 = BTZ, R2 = NPh2, n = 1; Pt- 8: R1 = NPh2, R2 = BTZ, n = 1) were synthesized. Their ground-state and excited-state properties and reverse saturable absorption performances were systematically investigated. The influence of these motifs on the photophysics of the complexes was investigated by spectroscopic methods and simulated by time-dependent density functional theory (TDDFT). The intense absorption bands below 410 nm for these complexes is assigned to predominantly 1π,π* transitions localized on either the bipyridine or the acetylide ligands; while the broad low-energy absorption bands between 420 and 575 nm are attributed to essentially 1MLCT (metal-to-ligand charge transfer)/ 1LLCT (ligand-to-ligand charge transfer) transitions, likely mixed with some 1ILCT (intraligand charge transfer) transition for Pt-4−Pt-7, and predominantly 1ILCT transition admixing with minor 1MLCT/1LLCT characters for Pt-8. The different substituents on the acetylide and bipyridyl ligands, and the degrees of π-conjugation in the bipyridyl ligand influence both the 1π,π* and charge transfer transitions pronouncedly. All complexes are emissive at room temperature. Upon excitation at their respective absorption band maxima, Pt-4, Pt-6, and Pt-8 exhibit acetylide ligand localized 1π,π* fluorescence and 3MLCT/3LLCT phosphorescence in CH2Cl2, while Pt-5 manifests 1ILCT fluorescence and 3ILCT phosphorescence. However, only 1LLCT fluorescence was observed for Pt-7 at room temperature. The nanosecond transient absorption study was carried out for Pt-4−Pt-8 in CH3CN. Except for Pt-7 that contains NPh2 at the acetylide ligands, Pt-4−Pt-6 and Pt-8 all exhibit weak to moderate excited-state absorption in the visible spectral region. Reverse saturable absorption (RSA) of these complexes was demonstrated at 532 nm using 4.1 ns laser pulses in a 2 mm cuvette. The strength of RSA follows this trend: Pt-4 > Pt-5 > Pt-7 > Pt-6 > Pt-8. Incorporation of electron-donating substituent NPh2 on the bipyridyl ligand significantly decreases the RSA, while shorter π-conjugation in the bipyridyl ligand increases the RSA. Therefore, the substituent at either the acetylide ligands or the bipyridyl ligand could affect the singlet and triplet excited-state characteristics significantly, which strongly influences the RSA efficiency.
Resumo:
Approximate calculations are reported on pyrene within the PPP model Hamiltonian using a novel restricted CI scheme which employs both molecular orbital and valence bond techniques. Also reported are detailed full CI results of the PPP model on 2,7-dihydropyrene obtained using the valence bond method. Spectral studies, charge and spin density calculations in ground and excited states, and ring current calculations in the ground state of the molecules are presented. In pyrene, the calculated excitation energies are in good agreement with experiment. The closed structure pi-conjugated molecule pyrene appears to show smaller distortions from the ground state geometry compared with the open structure pi-conjugated molecule 2,7-dihydropyrene. The ground state equilibrium structure of 2,7-dihydropyrene can be viewed as two hexatriene molecules connected by a vinyl crosslink, as is evident from bond order and ring current calculations. This is consistent with the only Kekule resonant structure possible for this molecule.
Resumo:
Based on the topology of C-60 and the resulting non-disjoint nature of the lowest unoccupied molecular orbitals, Ne propose a new model for ferromagnetic exchange in C-60-TDAE. Within the Hubbard model, we find that the ferromagnetic exchange integral is stabilized to first order in the inter-ball transfer integral, while the antiferromagnetic coupling is stabilized only to second order. This difference is adequate to counter the larger phase space available for stabilizing the antiferromagnetic state. Thus, the ground state is found to be ferromagnetic for reasonable inter-ball transfer integrals.
Resumo:
The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.
Resumo:
A comparative first principles study has been carried out for EuLiH3 (ELH) and EuTiO3 (ETO) using the generalized gradient approximation +U approach. While ELH exhibits ferromagnetic ground state for all volumes, the magnetic ground state of ETO has the tendency to switch from G-type antiferromagnetic to a ferromagnetic state with change in volume. The marked difference in magnetic behavior and magnitude of the nearest neighbors exchange interaction of both the compounds are shown to be related to the difference in their respective electronic structure near the Fermi level. The Ti 3d states are shown to play predominant role in weakening the strength of the exchange interaction in ETO.