963 resultados para He-jet recoil tape transport system
Resumo:
Il presente lavoro, senza alcuna pretesa di esaustività, ha inteso ricostruire il quadro normativo relativo alla disciplina dell’autotrasporto merci su strada. In primis, ci si è soffermata sugli aspetti generali del settore, approfondendo, in seguito, la normativa europea e nazionale. Tale excursus, ha permesso di riscontrare i molteplici interventi legislativi susseguitisi in ambito di regolamentazione dell’autotrasporto merci su strada, evidenziando i passaggi più significativi in tema di riordino della disciplina. Si è pertanto proceduto all’analisi del primo importante intervento legislativo del settore, intercorso ad opera della Legge n. 298/1974, disciplinante gli aspetti di natura pubblicistica del settore. Tale provvedimento, ha un apposito Albo Nazionale per gli autotrasportatori di merci per conto terzi, identificando i requisiti necessari per l’accesso al mercato e l’esercizio della professione di autotrasportatore di cose in conto terzi. Importati novità vengono introdotte con il D.lgs. 286/2005, provvedimento che ha portato al raggiungimento del processo di liberalizzazione del mercato. Successivamente si è proceduto a riscontrare l’intensa produzione normativa, posta a regolamentazione del settore, che nella ricerca di un equilibrio tra esigenze di mercato e corretto esercizio dell’attività di autotrasporto, si propone di addivenire al raggiungimento degli obiettivi comunitari di armonizzazione della disciplina e qualificazione del settore dell’autotrasporto. Significativi, in tal senso, i recenti interventi di riforma posti in essere con il “Pacchetto comunitario del 21 ottobre 2009” ( Regolamento (CE) 1071/2009 e Regolamento (CE) 1072/2009. Da ultimo, al fine di verificare le eventuali debolezze del sistema normativo vigente, in relazione al raggiungimento degli obiettivi comunitari suesposti, si è ritenuto di indirizzare la ricerca verso un’attenta valutazione dell’efficienza dei modelli di trasporto merci su strada, verificandone l’impatto in termini di maggior incidenza sui costi esterni derivanti dal trasporto. A tal proposito, particolare attenzione è stata rivolta anche alla disciplina del trasporto in conto proprio.
Resumo:
Cancer is a multifactorial disease characterized by a very complex etiology. Basing on its complex nature, a promising therapeutic strategy could be based by the “Multi-Target-Directed Ligand” (MTDL) approach, based on the assumption that a single molecule could hit several targets responsible for the pathology. Several agents acting on DNA are clinically used, but the severe deriving side effects limit their therapeutic application. G-quadruplex structures are DNA secondary structures located in key zones of human genome; targeting quadruplex structures could allow obtaining an anticancer therapy more free from side effects. In the last years it has been proved that epigenetic modulation can control the expression of human genes, playing a crucial role in carcinogenesis and, in particular, an abnormal expression of histone deacetylase enzymes are related to tumor onset and progression. This thesis deals with the design and synthesis of new naphthalene diimide (NDI) derivatives endowed with anticancer activity, interacting with DNA together with other targets implicated in cancer development, such as HDACs. NDI-polyamine and NDI-polyamine-hydroxamic acid conjugates have been designed with the aim to provide potential MTDLs, in order to create molecules able simultaneously to interact with different targets involved in this pathology, specifically the G-quadruplex structures and HDAC, and to exploit the polyamine transport system to get selectively into cancer cells. Macrocyclic NDIs have been designed with the aim to improve the quadruplex targeting profile of the disubstituted NDIs. These compounds proved the ability to induce a high and selective stabilization of the quadruplex structures, together with cytotoxic activities in the micromolar range. Finally, trisubstituted NDIs have been developed as G-quadruplex-binders, potentially effective against pancreatic adenocarcinoma. In conclusion, all these studies may represent a promising starting point for the development of new interesting molecules useful for the treatment of cancer, underlining the versatility of the NDI scaffold.
Resumo:
Sviluppo ed implementazione di protocolli per il monitoraggio di traffico stradale sulla piattaforma di simulazione iTETRIS per la raccolta di informazioni da utilizzare in applicazioni di Intelligent Transport System.
Resumo:
Die vorliegende kumulative Arbeit umfasst Analysen zur Aufklärung der molekularen Grundlagen des humanen Usher-Syndroms (USH), der häufigsten Ursache kombinierter vererblicher Taub-Blindheit. Ziel dieser Arbeit war es, neue Erkenntnisse zur Funktion der USH-Proteine und den von ihnen organisierten Protein-Netzwerken in der Photorezeptorzelle zu erhalten. Dadurch sollten weitere Einsichten in die molekularen Ursachen des retinalen Phänotyps von USH gewonnen werden. Die Ergebnisse dieser Analysen wurden in einem Übersichtsartikel (I) und zwei Originalarbeiten (II, III) zusammengestellt.rn Im Übersichtsartikel (I) wurden die vorliegenden Hinweise zusammengefasst, die USH auf Grundlage der molekularen Verbindungen ebenfalls als Ciliopathien definiert. Zudem wird die Bedeutung des periciliären USH-Proteinnetzwerkes für das sensorische Cilium (Außensegment) der Photorezeptorzelle herausgestellt. rn In Publikation II wurde der Aufbau des USH1-USH2-Proteinnetzwerkes als Teil des periciliären Komplexes analysiert, der beim cargo handover von vesikulärer Fracht vom Innensegment- auf den ciliären Transport für die Photorezeptorzelle essentiell ist. Experimentell wurde Ush2a als neuer SANS-Interaktionspartner validiert. Des Weiteren wurde ein ternärer Komplex aus den USH-Proteinen SANS, Ush2a und Whirlin identifiziert, dessen Zusammensetzung durch die phosphorylierungsabhängige Interaktion zwischen SANS und Ush2a reguliert werden könnte. Dieser ternäre Komplex kann sowohl der Integrität der Zielmembran dienen als auch am Transfer von Molekülen ins Außensegment beteiligt sein.rn In Publikation III wurde das MAGUK-Protein Magi2 als neuer Interaktionspartner von SANS identifiziert und die Interaktion durch komplementäre Interaktionsassays validiert. Dabei wurde ein internes PDZ-Binde-Motiv in der SAM-Domäne von SANS identifiziert, das die Interaktion zur PDZ5-Domäne von Magi2 phosphorylierungsabhängig vermittelt. Dadurch wurde bestätigt, dass SANS durch post-translationale Modifizierung reguliert wird. Weiterführende Experimente zur Funktion des Magi2-SANS-Komplexes zeigen, dass Magi2 an Prozess der Rezeptor-vermittelten Endocytose beteiligt ist. Die Phosphorylierung von SANS durch die Kinase CK2 spielt bei der Endocytose ebenfalls eine wichtige Rolle. Der Phosphorylierungsstatus von SANS moduliert die Interaktion zu Magi2 und reguliert dadurch negativ den Prozess der Endocytose. In RNAi-Studien wurde die durch Magi2-vermittelte Endocytose darüber hinaus mit dem Prozess der Ciliogenese verknüpft. Die Analyse der subzellulären Verteilung der Interaktionspartner lokalisieren Magi2 im periciliären Komplex und assoziieren das periciliäre USH-Proteinnetzwerk dadurch mit dem Prozess der Endocytose in der ciliary pocket. Der SANS-Magi2-Komplex sollte demnach für Aufbau und Funktion des sensorischen Ciliums der Photorezeptorzelle eine wichtige Rolle spielen.rn Die Gesamtheit an Informationen, die aus den Publikationen dieser Dissertation und aus den Kooperationsprojekten (*) resultieren, haben die Kenntnisse zur zellulären Funktion der USH-Proteine und ihrer Interaktionspartner und damit über die pathogenen Mechanismen von USH erweitert. Dies bildet die Basis, um fundierte Therapiestrategien zu entwickeln.
Resumo:
Mitochondria are found in all eukaryotic cells and derive from a bacterial endosymbiont [1, 2]. The evolution of a protein import system was a prerequisite for the conversion of the endosymbiont into a true organelle. Tom40, the essential component of the protein translocase of the outer membrane, is conserved in mitochondria of almost all eukaryotes but lacks bacterial orthologs [3-6]. It serves as the gateway through which all mitochondrial proteins are imported. The parasitic protozoa Trypanosoma brucei and its relatives do not have a Tom40-like protein, which raises the question of how proteins are imported by their mitochondria [7, 8]. Using a combination of bioinformatics and in vivo and in vitro studies, we have discovered that T. brucei likely employs a different import channel, termed ATOM (archaic translocase of the outer mitochondria! membrane). ATOM mediates the import of nuclear-encoded proteins into mitochondria and is essential for viability of trypanosomes. It is not related to Tom40 but is instead an ortholog of a subgroup of the 0mp85 protein superfamily that is involved in membrane translocation and insertion of bacterial outer membrane proteins [9]. This suggests that the protein import channel in trypanosomes is a relic of an archaic protein transport system that was operational in the ancestor of all eukaryotes.
Resumo:
The time course of lake recovery after a reduction in external loading of nutrients is often controlled by conditions in the sediment. Remediation of eutrophication is hindered by the presence of legacy organic carbon deposits, that exert a demand on the terminal electron acceptors of the lake and contribute to problems such as internal nutrient recycling, absence of sediment macrofauna, and flux of toxic metal species into the water column. Being able to quantify the timing of a lake’s response requires determination of the magnitude and lability, i.e., the susceptibility to biodegradation, of the organic carbon within the legacy deposit. This characterization is problematic for organic carbon in sediments because of the presence of different fractions of carbon, which vary from highly labile to refractory. The lability of carbon under varied conditions was tested with a bioassay approach. It was found that the majority of the organic material found in the sediments is conditionally-labile, where mineralization potential is dependent on prevailing conditions. High labilities were noted under oxygenated conditions and a favorable temperature of 30 °C. Lability decreased when oxygen was removed, and was further reduced when the temperature was dropped to the hypolimnetic average of 8° C . These results indicate that reversible preservation mechanisms exist in the sediment, and are able to protect otherwise labile material from being mineralized under in situ conditions. The concept of an active sediment layer, a region in the sediments in which diagenetic reactions occur (with nothing occurring below it), was examined through three lines of evidence. Initially, porewater profiles of oxygen, nitrate, sulfate/total sulfide, ETSA (Electron Transport System Activity- the activity of oxygen, nitrate, iron/manganese, and sulfate), and methane were considered. It was found through examination of the porewater profiles that the edge of diagenesis occurred around 15-20 cm. Secondly, historical and contemporary TOC profiles were compared to find the point at which the profiles were coincident, indicating the depth at which no change has occurred over the (13 year) interval between core collections. This analysis suggested that no diagenesis has occurred in Onondaga Lake sediment below a depth of 15 cm. Finally, the time to 99% mineralization, the t99, was viewed by using a literature estimate of the kinetic rate constant for diagenesis. A t99 of 34 years, or approximately 30 cm of sediment depth, resulted for the slowly decaying carbon fraction. Based on these three lines of evidence , an active sediment layer of 15-20 cm is proposed for Onondaga Lake, corresponding to a time since deposition of 15-20 years. While a large legacy deposit of conditionally-labile organic material remains in the sediments of Onondaga Lake, it becomes clear that preservation, mechanisms that act to shield labile organic carbon from being degraded, protects this material from being mineralized and exerting a demand on the terminal electron acceptors of the lake. This has major implications for management of the lake, as it defines the time course of lake recovery following a reduction in nutrient loading.
Resumo:
In recent years, the ability to respond to real time changes in operations and reconfigurability in equipment are likely to become essential characteristics for next generation intralogistics systems as well as the level of automation, cost effectiveness and maximum throughput. In order to cope with turbulences and the increasing level of dynamic conditions, future intralogistics systems have to feature short reaction times, high flexibility in processes and the ability to adapt to frequent changes. The increasing autonomy and complexity in processes of today’s intralogistics systems requires new and innovative management approaches, which allow a fast response to (un)anticipated events and adaptation to changing environment in order to reduce the negative consequences of these events. The ability of a system to respond effectively a disruption depends more on the decisions taken before the event than those taken during or after. In this context, anticipatory change planning can be a usable approach for managers to make contingency plans for intralogistics systems to deal with the rapidly changing marketplace. This paper proposes a simulation-based decision making framework for the anticipatory change planning of intralogistics systems. This approach includes the quantitative assessments based on the simulation in defined scenarios as well as the analysis of performance availability that combines the flexibility corridors of different performance dimensions. The implementation of the approach is illustrated on a new intralogistics technology called the Cellular Transport System.
Resumo:
Choline is an essential nutrient for eukaryotic cells, where it is used as precursor for the synthesis of choline-containing phospholipids, such as phosphatidylcholine (PC). According to published data, Trypanosoma brucei parasites are unable to take up choline from the environment but instead use lyso-phosphatidylcholine as precursor for choline lipid synthesis. We now show that T. brucei procyclic forms in culture readily incorporate [3H]-labeled choline into PC, indicating that trypanosomes express a transporter for choline at the plasma membrane. Characterization of the transport system in T. brucei procyclic and bloodstream forms shows that uptake of choline is independent of sodium and potassium ions and occurs with a Km in the low micromolar range. In addition, we demonstrate that choline uptake can be blocked by the known choline transport inhibitor, hemicholinium-3, and by synthetic choline analogs that have been established as anti-malarials. Together, our results show that T. brucei parasites express an uptake system for choline and that exogenous choline is used for PC synthesis.
Resumo:
An updated search is performed for gluino, top squark, or bottom squark R-hadrons that have come to rest within the ATLAS calorimeter, and decay at some later time to hadronic jets and a neutralino, using 5.0 and 22.9 fb(-1) of pp collisions at 7 and 8 TeV, respectively. Candidate decay events are triggered in selected empty bunch crossings of the LHC in order to remove pp collision backgrounds. Selections based on jet shape and muon system activity are applied to discriminate signal events from cosmic ray and beam-halo muon backgrounds. In the absence of an excess of events, improved limits are set on gluino, stop, and sbottom masses for different decays, lifetimes, and neutralino masses. With a neutralino of mass 100 GeV, the analysis excludes gluinos with mass below 832 GeV (with an expected lower limit of 731 GeV), for a gluino lifetime between 10 mu s and 1000 s in the generic R-hadron model with equal branching ratios for decays to q (q) over bar(chi) over tilde (0) and g (chi) over tilde (0). Under the same assumptions for the neutralino mass and squark lifetime, top squarks and bottom squarks in the Regge R-hadron model are excluded with masses below 379 and 344 GeV, respectively.
Isolation and functional characterization of a high affinity urea transporter from roots of Zea mays
Resumo:
Background: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. Results: Kinetic characterization of urea uptake (<300 mu M) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. Conclusions: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.
Resumo:
PLACENTAL URIC ACID TRANSPORTER GLUT9 IS MODULATED BY FREE IODINE Objectives: Materno-fetal transplacental transport is crucial for the fetal well-being. The altered expression of placental transport proteins under specific pathophysiological conditions may affect the intrauterine environment. Pre-eclampsia is often associated with high maternal uric acid serum levels. The regulation of the placental uric transport system and its transporter glucose transporter (GLUT)-9 are not fully understood yet. The aim of this study was to investigate the placental urate transport and to characterize its transporter GLUT9. Methods: In this study we used a transepithelial transport (Transwell®) model to assess uric acid transport activity. Electrophysiological techniques and radioactive ligand up-take assays were used to measure transport activity of GLUT9 expressed in Xenopus oocytes. Results: In the Transwell/model uric acid is transported across the BeWo choriocarcinoma cell monolayer with 530 pmol/min at the linear stage. We could successfully over-express GLUT9 using the Xenopus laevis oocytes expression system. Chloride modulates the urate transport system: interestingly replacing chloride with iodine resulted in a complete loss of urate transport activity.We determined the IC50 of iodine at 30uM concentration. In radioactive up-take experiments iodinehad noeffect on uric acid transport. Conclusions: In vitro the “materno-fetal” transport of uric acid is slow. This indicates that in vivo the child is protected from short-term fluctuations of maternal uric acid serum concentrations. The different results regarding iodine-mediated regulation of GLUT9 transport activity between electrophysiological and radioactive ligand uptake experiments may suggest that iodine does not directly inhibit uric acid transport, but changes the mode of up-take from an electrogenic to an electroneutral transport. GLUT9 is not an uric acid uniporter, there are more ions involved in the transport. This may allow regulating uric acid transport by the change from an active to a passive transport.
Resumo:
PLACENTAL GLUCOSE TRANSPORTER (GLUT)-1 REGULATION IN PREECLAMPSIA Camilla Marini a,b, Benjamin P. Lüscher a,b, Marianne J€orger-Messerli a,b, Ruth Sager a,b, Xiao Huang c, Jürg Gertsch c, Matthias A. Hediger c, Christiane Albrecht c, Marc U. Baumann a,c, Daniel V. Surbek a,c a Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland, Switzerland; b Department of Clinical Research, University of Bern, Bern, Switzerland, Switzerland; c Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, Switzerland Objectives: Glucose is a primary energy source for the fetus. The absence of significant gluconeogenesis in the fetus means that the fetal up-take of this vital nutrient is dependent on maternal supply and subsequent transplacental transport. Altered expression and/or function of placental transporters may affect the intrauterine environment and could compromise fetal and mother well-being. We speculated that pre-eclampsia (PE) impairs the placental glucose transport system. Methods: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot analysis. mRNA levels in whole villous tissue lysate were quantified by real-time PCR. To assess glucose transport activity a radiolabeled substrate up-take assay and a transepithelial transport model using primary cytotrophoblasts were established. Results: GLUT1 mRNA expression was not changed in PE when compared to control, whereas protein expression was significantly down-regulated. Glucose up-take into syncytial microvesicles was reduced in PE compared to control. In a transepithelial transport model, phloretinmediated inhibition of GLUT1 at the apical side of primary cytotrophoblasts showed a 44% of reduction of transepithelial glucose transport at IC50. Conclusions: GLUT1 is down-regulated on protein and functional level in PE compared to control. Altering glucose transport activity by inhibition of apical GLUT-1 indicates that transplacental glucose transport might be regulated on the apical side of the syncytiotrophoblast. These results might help to understand better the regulation of GLUT1 transporter and maybe in future to develop preventive strategies to modulate the fetal programming and thereby reduce the incidence of disease for both the mother and her child later in life.
Resumo:
Placental Glucose Transporter (GLUT1) Expression in Pre- Eclampsia. INTRODUCTION: Glucose is the most important substrate for fetal growth. Indeed, there is no significant de novo glucose synthesis in the fetus and the fetal up-take of glucose rely on maternal supply and transplacental transport. Therefore, a defective placental transporter system may affect the intrauterine environment compromising fetal as well as mother well-being. On this line, we speculated that the placental glucose transport system could be impaired in pre-eclampsia (PE). METHODS: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot. mRNA levels were quantified by quantitative real-time PCR. A radiolabeled substrate up-take assay was established to assess glucose transport activity. FACS analysis was performed to check the shape of MVM. Statistical analysis was performed using one way ANOVA test. RESULTS: GLUT1 protein levels were down-regulated (70%; P<0.01) in pre-eclamptic placentae when compared to control placentae. This data is in line with the reduced glucose up-take in MVM prepared from preeclamptic placentae. Of note, the mRNA levels of GLUT1 did not change between placentae affected by PE and normal placentae, suggesting that the levels of GLUT1 are post-transcriptionally regulated. FACS analysis on MVM vesicles from both normal placentae and pre-eclamptic placentae showed equal heterogeneity in the complexes formed. This excluded the possibility that the altered glucose up-take observed in pre-eclamptic MVM was caused by a different shape of these vesicles. CONCLUSIONS: Protein and functional studies of GLUT1 in MVM suggest that in pre-eclampsia the glucose transport between mother and fetus might be defective. To further investigate this important biological aspect we will increase the number of samples obtained from patients and use primary cells to study trans epithelial transport system in vitro.
Resumo:
William Harvey's discovery of the circulation of the blood is often described as a product of the Scientific Revolution of the Seventeenth Century. Modern research has, however, shown thatHarvey followed the Aristotelian research tradition and thus tried to reveal the purpose of the organs through examination of various animals. His publication of 1628 has to be read as an argument of natural philosophy, or, more precisely, as a series of linked observations, experiments and philosophical reasonings from which the existence of circulation has to be deduced as a logical consequence. Harvey did not consider experiments as superior to philosophical reasoning nor intended he to create a new system of medicine. He believed in the vitality of the heart and the blood and rejected Francis Bacon's empirism and the mechanistic rationalism of Descartes. Harvey's contribution and originality lied less in his single observations and experiments but in the manner how he linked them with critical reasoning and how he accepted, presented and defended the ensuing radical findings.