915 resultados para HUMAN-BLOOD-PLASMA
Resumo:
The poor response to immunotherapy in patients with multiple myeloma (MM) indicates that a better understanding of any defects in the immune response in these patients is required before effective therapeutic strategies can be developed. Recently we reported that high potency (CMRF44(+)) dendritic cells (DC) in the peripheral blood of patients with MM failed to significantly up-regulate the expression of the B7 co-stimulatory molecules, CD80 and CD86, in response to an appropriate signal from soluble trimeric human CD40 ligand. This defect was caused by transforming growth factor beta(1) (TGFbeta(1)) and interleukin (IL)-10, produced by malignant plasma cells, and the defect was neutralized in vitro with anti-TGFbeta(1). As this defect could impact on immunotherapeutic strategies and may be a major cause of the failure of recent trials, it was important to identify a more clinically useful agent that could correct the defect in vivo. In this study of 59 MM patients, the relative and absolute numbers of blood DC were only significantly decreased in patients with stage III disease and CD80 up-regulation was reduced in both stage I and stage III. It was demonstrated that both IL-12 and interferon-gamma neutralized the failure to stimulate CD80 up-regulation by huCD40LT in vitro. IL-12 did not cause a change in the distribution of DC subsets that were predominantly myeloid (CD11c+ and CDw123-) suggesting that there would be a predominantly T-helper cell type response. The addition of IL-12 or interferon-gamma to future immunotherapy trials involving these patients should be considered.
Resumo:
In-vitro experimentation was performed on porcine and human blood to determine their comparative responsiveness to a novel fibrinolytic inhibitor and thereby assess whether the pig is a suitable animal model for subsequent in-vivo testing of this inhibitor. Thromboelastography showed the clots formed from porcine whole blood to be highly resistant to tissue plasminogen activator (t-PA)-catalyzed lysis, and this communication offers the resistance of porcine plasminogen to activation by t-PA as an explanation. Porcine blood containing 100 and 1500 IU/ml added t-PA lysed very slowly, having LY30 values of 1.9 +/- 1.4 and 2.9 +/- 1.9%, respectively. In contrast, the LY30 values for the human clots containing 100 and 1500 IU/ml t-PA were 77.1 +/- 6.3 and 93.3 +/- 1.3%, respectively. Moreover, purified porcine plasminogen was activated very slowly by added t-PA in the presence of both human and porcine fibrin. Activation of plasminogen by the endogenous activators, as measured by the euglobulin clot lysis time, was greatly prolonged for the pig (22 +/- 3 h) compared with the human (3.5 +/- 1.5 h). These results suggest caution in using the pig as an experimental model when studying the effects of various agents on fibrinolysis.
Resumo:
Introduction: Endothelin-1 is a potent vasoconstricting growth peptide. In physiologic conditions basal levels maintain vascular homeostasis, conversely in pathological situations it may be expressed in response to chronic and acute vascular injury. Elevated levels of plasma ET-1 have been identified in sub-populations at risk of ischaemic heart disease (IHD) including smokers, diabetics and hyerlipidaemic subjects and in patients with atherosclerotic disease. This peptide may be chronically expressed, such as in congestive heart failure where it has been used as a prognostic marker of disease severity and also acutely, after cardiac revascularisation surgery, possibly as a result of endothelial injury and ischaemia. Aims: The objectives of this study were to (1) identify basal endothelin-1 concentrations in a young healthy control group with no risk factors for IHD (control group 1); (2) to compare; (1) venous plasma ET-1 levels preoperatively and post-operatively in patients undergoing CABG surgery, (3) to compare pre-operative plasma ET-1 levels from the CABG group with an age and gender matched control group (control group 2) and (4) combine all three groups to assess correlations between plasma ET-1 and the various risk factors for IHD, including smoking, hypertension, hyperlipidemia, diabetes and family history. Methods: Venous specimens were collected in chilled EDTA tubes and samples measured using an ELISA assay (Biomedica), following the standard protocol for human EDTA plasma. Results: Forty CABG patients (5F, 35M, mean age 66 yrs), 15 control group 1 subjects (8F, 7M, mean age 29 yrs) and 30 control group 2 subjects (5F, 25M, mean age 61 yrs) participated in the study. No significant difference was detected in plasma ET-1 levels between the controls (1) and (2), and the CABG group, where plasma ET-1 levels were 3.37+/ 5.19 pmol/L, 1.99+/3.74 pmol/L and 1.28+/1.27 pmol/L, respectively. There was a non-significant elevation in post-op ET-1 plasma in comparison with the pre-op levels (2.50+/0.51 Vs 1.45+/6.44). There were also no statistical correlation between risk factors for IHD including smoking, hypertension, NIDDM, hyperlipidemia or family history when data from both patient and controls groups was merged. Conclusion: Contrary to other findings, plasma ET-1 does not appear to a valid marker for IHD or factors which are strongly associated with the pathogenesis of this disease.
Resumo:
The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.
Resumo:
CGRP is an important neuropeptide found throughout the cardiovascular system. However, until recently it has been difficult to define its pharmacology or physiological role because of the lack of suitable antagonists. BIBN4096BS is a high-affinity, nonpeptide antagonist that shows much greater selectivity for human CGRP1 receptors compared to any other drug. Its pharmacology has been defined with studies on transfected cells or cell lines endogenously expressing receptors of known composition. These have allowed confirmation that in many human blood vessels, CGRP is working via CGRP1 receptors. However, it also interacts with other CGRP-activated receptors, of unknown composition. In vivo, clinical studies have shown that BIBN4096BS is likely to be useful in the treatment of migraine. It has also been used to define the role of CGRP in phenomena such as plasma extravasation and cardioprotection following ischemia.
Resumo:
Cell exclusion is the phenomenon whereby the hematocrit and viscosity of blood decrease in areas of high stress. While this is well known in naturally occurring Poiseuille flow in the human body, it has never previously been shown in Couette flow, which occurs in implantable devices including blood pumps. The high-shear stresses that occur in the gap between the boundaries in Couette flow are known to cause hemolysis in erythrocytes. We propose to mitigate this damage by initiating cell exclusion through the use of a spiral-groove bearing (SGB) that will provide escape routes by which the cells may separate themselves from the plasma and the high stresses in the gap. The force between two bearings (one being the SGB) in Couette flow was measured. Stained erythrocytes, along with silver spheres of similar diameter to erythrocytes, were visualized across a transparent SGB at various gap heights. A reduction in the force across the bearing for human blood, compared with fluids of comparable viscosity, was found. This indicates a reduction in the viscosity of the fluid across the bearing due to a lowered hematocrit because of cell exclusion. The corresponding images clearly show both cells and spheres being excluded from the gap by entering the grooves. This is the first time the phenomenon of cell exclusion has been shown in Couette flow. It not only furthers our understanding of how blood responds to different flows but could also lead to improvements in the future design of medical devices.
Resumo:
This dissertation presents dynamic flow experiments with fluorescently labeled platelets to allow for spatial observation of wall attachment in inter-strut spacings, to investigate their relationship to flow patterns. Human blood with fluorescently labeled platelets was circulated through an in vitro system that produced physiologic pulsatile flow in (1) a parallel plate blow chamber that contained two-dimensional (2D) stents that feature completely recirculating flow, partially recirculating flow, and completely reattached flow, and (2) a three-dimensional (3D) cylindrical tube that contained stents of various geometric designs. ^ Flow detachment and reattachment points exhibited very low platelet deposition. Platelet deposition was very low in the recirculation regions in the 3D stents unlike the 2D stents. Deposition distal to a strut was always high in 2D and 3D stents. Spirally recirculating regions were found in 3D unlike in 2D stents, where the deposition was higher than at well-separated regions of recirculation. ^
Resumo:
Little is known about the molecular mechanisms whereby the human blood fluke Schistosoma japonicum is able to survive in the host venous blood system. Protease inhibitors are likely released by the parasite enabling it to avoid attack by host proteolytic enzymes and coagulation factors. Interrogation of the S. japonicum genomic sequence identified a gene, SjKI-1, homologous to that encoding a single domain Kunitz protein (Sjp_0020270) which we expressed in recombinant form in Escherichia coli and purified. SjKI-1 is highly transcribed in adult worms and eggs but its expression was very low in cercariae and schistosomula. In situ immunolocalization with anti-SjKI-1 rabbit antibodies showed the protein was present in eggs trapped in the infected mouse intestinal wall. In functional assays, SjKI-1 inhibited trypsin in the picomolar range and chymotrypsin, neutrophil elastase, FXa and plasma kallikrein in the nanomolar range. Furthermore, SjKI-1, at a concentration of 7·5 µ m, prolonged 2-fold activated partial thromboplastin time of human blood coagulation. We also demonstrate that SjKI-1 has the ability to bind Ca(++). We present, therefore, characterization of the first Kunitz protein from S. japonicum which we show has an anti-coagulant properties. In addition, its inhibition of neutrophil elastase indicates SjKI-1 have an anti-inflammatory role. Having anti-thrombotic properties, SjKI-1 may point the way towards novel treatment for hemostatic disorders.
Resumo:
Wydział Fizyki
Resumo:
Background: Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in many products and have been detected in human samples worldwide. Limited data show that concentrations are elevated in young children. Objectives: We investigated the association between PBDEs and age with an emphasis on young children from Australia in 2006–2007. Methods: We collected human blood serum samples (n = 2,420), which we stratified by age and sex and pooled for analysis of PBDEs. Results: The sum of BDE-47, -99, -100, and -153 concentrations (Σ4PBDE) increased from 0–0.5 years (mean ± SD, 14 ± 3.4 ng/g lipid) to peak at 2.6–3 years (51 ± 36 ng/g lipid; p < 0.001) and then decreased until 31–45 years (9.9 ± 1.6 ng/g lipid). We observed no further significant decrease among ages 31–45, 45–60 (p = 0.964), or > 60 years (p = 0.894). The mean Σ4PBDE concentration in cord blood (24 ± 14 ng/g lipid) did not differ significantly from that in adult serum at ages 15–30 (p = 0.198) or 31–45 years (p = 0.140). We found no temporal trend when we compared the present results with Australian PBDE data from 2002–2005. PBDE concentrations were higher in males than in females; however, this difference reached statistical significance only for BDE-153 (p = 0.05). Conclusions: The observed peak concentration at 2.6–3 years of age is later than the period when breast-feeding is typically ceased. This suggests that in addition to the exposure via human milk, young children have higher exposure to these chemicals and/or a lower capacity to eliminate them. Key words: Australia, children, cord blood, human blood serum, PBDEs, polybrominated diphenyl ethers. Environ Health Perspect 117:1461–1465 (2009). doi:10.1289/ehp.0900596
Resumo:
Brominated flame retardants, including hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are used to reduce the flammability of a multitude of electrical and electronic products, textiles and foams. The use of selected PBDEs has ceased, however, use of decaBDE and HBCD continues. While elevated concentrations of PBDEs in humans have been observed in Australia, no data is available on other BFRs such as HBCD. This study aimed to provide background HBCD concentrations from a representative sample of the Australian population and to assess temporal trends of HBCD and compare with PBDE concentrations over a 16 year period. Samples of human milk collected in Australia from 1993 to 2009, primarily from primiparae mothers were combined into 12 pools from 1993 (2 pools); 2001; 2002/2003 (4 pools); 2003/2004; 2006; 2007/2008 (2 pools); and 2009. Concentrations of ∑HBCD ranged from not quantified (nq) to 19 ng g−1 lipid while α-HBCD and γ-HBCD ranged from nq to 10 ng g−1 lipid and nq to 9.2 ng g−1 lipid. β-HBCD was detected in only one sample at 3.6 ng g−1 lipid while ∑4PBDE ranged from 2.5 to 15.8 ng g−1 lipid. No temporal trend was apparent in HBCD concentrations in human milk collected in Australia from 1993 to 2009. In comparison, PBDE concentrations in human milk show a peak around 2002/03 (mean ∑4PBDEs = 9.6 ng g−1 lipid) and 2003/04 (12.4 ng g−1 lipid) followed by a decrease in 2007/08 (2.7 ng g−1 lipid) and 2009 (2.6 ng g−1 lipid). In human blood serum samples collected from the Australian population, PBDE concentrations did not vary greatly (p = 0.441) from 2002/03 to 2008/09. Continued monitoring including both human milk and serum for HBCD and PBDEs is required to observe trends in human body burden of HBCD and PBDEs body burden following changes to usage.
Resumo:
Selenium (Se) is an essential trace element and the clinical consequences of Se deficiency have been well-documented. Se is primarily obtained through the diet and recent studies have suggested that the level of Se in Australian foods is declining. Currently there is limited data on the Se status of the Australian population so the aim of this study was to determine the plasma concentration of Se and glutathione peroxidase (GSH-Px), a well-established biomarker of Se status. Furthermore, the effect of gender, age and presence of cardiovascular disease (CVD) was also examined. Blood plasma samples from healthy subjects (140 samples, mean age = 54 years; range, 20-86 years) and CVD patients (112 samples, mean age = 67 years; range, 40-87 years) were analysed for Se concentration and GSH-Px activity. The results revealed that the healthy Australian cohort had a mean plasma Se level of 100.2 +/- 1.3 microg Se/L and a mean GSH-Px activity of 108.8 +/- 1.7 U/L. Although the mean value for plasma Se reached the level required for optimal GSH-Px activity (i.e. 100 microg Se/L), 47% of the healthy individuals tested fell below this level. Further evaluation revealed that certain age groups were more at risk of a lowered Se status, in particular, the oldest age group of over 81 years (females = 97.6 +/- 6.1 microg Se/L; males = 89.4 +/- 3.8 microg Se/L). The difference in Se status between males and females was not found to be significant. The presence of CVD did not appear to influence Se status, with the exception of the over 81 age group, which showed a trend for a further decline in Se status with disease (plasma Se, 93.5 +/- 3.6 microg Se/L for healthy versus 88.2 +/- 5.3 microg Se/L for CVD; plasma GSH-Px, 98.3 +/- 3.9 U/L for healthy versus 87.0 +/- 6.5 U/L for CVD). These findings emphasise the importance of an adequate dietary intake of Se for the maintenance of a healthy ageing population, especially in terms of cardiovascular health.
Resumo:
This is the first report of an antibody-fusion protein expressed in transgenic plants for direct use in a medical diagnostic assay. By the use of gene constructs with appropriate promoters, high level expression of an anti-glycophorin single-chain antibody fused to an epitope of the HIV virus was obtained in the leaves and stems of tobacco, tubers of potato and seed of barley. This fusion protein replaces the SimpliRED™ diagnostic reagent, used for detecting the presence of HIV-1 antibodies in human blood. The reagent is expensive and laborious to produce by conventional means since chemical modifications to a monoclonal antibody are required. The plant-produced fusion protein was fully functional (by ELISA) in crude extracts and, for tobacco at least, could be used without further purification in the HIV agglutination assay. All three crop species produced sufficient reagent levels to be superior bioreactors to bacteria or mice, however barley grain was the most attractive bioreactor as it expressed the highest level (150 μg of reagent g-1), is inexpensive to produce and harvest, poses a minuscule gene flow problem in the field, and the activity of the reagent is largely undiminished in stored grain. This work suggests that barley seed will be an ideal factory for the production of antibodies, diagnostic immunoreagents, vaccines and other pharmaceutical proteins.