940 resultados para Graph analytics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Teaching is a dynamic activity. It can be very effective, if its impact is constantly monitored and adjusted to the demands of changing social contexts and needs of learners. This implies that teachers need to be aware about teaching and learning processes. Moreover, they should constantly question their didactical methods and the learning resources, which they provide to their students. They should reflect if their actions are suitable, and they should regulate their teaching, e.g., by updating learning materials based on new knowledge about learners, or by motivating learners to engage in further learning activities. In the last years, a rising interest in ‘learning analytics’ is observable. This interest is motivated by the availability of massive amounts of educational data. Also, the continuously increasing processing power, and a strong motivation for discovering new information from these pools of educational data, is pushing further developments within the learning analytics research field. Learning analytics could be a method for reflective teaching practice that enables and guides teachers to investigate and evaluate their work in future learning scenarios. However, this potentially positive impact has not yet been sufficiently verified by learning analytics research. Another method that pursues these goals is ‘action research’. Learning analytics promises to initiate action research processes because it facilitates awareness, reflection and regulation of teaching activities analogous to action research. Therefore, this thesis joins both concepts, in order to improve the design of learning analytics tools. Central research question of this thesis are: What are the dimensions of learning analytics in relation to action research, which need to be considered when designing a learning analytics tool? How does a learning analytics dashboard impact the teachers of technology-enhanced university lectures regarding ‘awareness’, ‘reflection’ and ‘action’? Does it initiate action research? Which are central requirements for a learning analytics tool, which pursues such effects? This project followed design-based research principles, in order to answer these research questions. The main contributions are: a theoretical reference model that connects action research and learning analytics, the conceptualization and implementation of a learning analytics tool, a requirements catalogue for useful and usable learning analytics design based on evaluations, a tested procedure for impact analysis, and guidelines for the introduction of learning analytics into higher education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, learning analytics (LA) has attracted a great deal of attention in technology-enhanced learning (TEL) research as practitioners, institutions, and researchers are increasingly seeing the potential that LA has to shape the future TEL landscape. Generally, LA deals with the development of methods that harness educational data sets to support the learning process. This paper provides a foundation for future research in LA. It provides a systematic overview on this emerging field and its key concepts through a reference model for LA based on four dimensions, namely data, environments, context (what?), stakeholders (who?), objectives (why?), and methods (how?). It further identifies various challenges and research opportunities in the area of LA in relation to each dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stemmatology, or the reconstruction of the transmission history of texts, is a field that stands particularly to gain from digital methods. Many scholars already take stemmatic approaches that rely heavily on computational analysis of the collated text (e.g. Robinson and O’Hara 1996; Salemans 2000; Heikkilä 2005; Windram et al. 2008 among many others). Although there is great value in computationally assisted stemmatology, providing as it does a reproducible result and allowing access to the relevant methodological process in related fields such as evolutionary biology, computational stemmatics is not without its critics. The current state-of-the-art effectively forces scholars to choose between a preconceived judgment of the significance of textual differences (the Lachmannian or neo-Lachmannian approach, and the weighted phylogenetic approach) or to make no judgment at all (the unweighted phylogenetic approach). Some basis for judgment of the significance of variation is sorely needed for medieval text criticism in particular. By this, we mean that there is a need for a statistical empirical profile of the text-genealogical significance of the different sorts of variation in different sorts of medieval texts. The rules that apply to copies of Greek and Latin classics may not apply to copies of medieval Dutch story collections; the practices of copying authoritative texts such as the Bible will most likely have been different from the practices of copying the Lives of local saints and other commonly adapted texts. It is nevertheless imperative that we have a consistent, flexible, and analytically tractable model for capturing these phenomena of transmission. In this article, we present a computational model that captures most of the phenomena of text variation, and a method for analysis of one or more stemma hypotheses against the variation model. We apply this method to three ‘artificial traditions’ (i.e. texts copied under laboratory conditions by scholars to study the properties of text variation) and four genuine medieval traditions whose transmission history is known or deduced in varying degrees. Although our findings are necessarily limited by the small number of texts at our disposal, we demonstrate here some of the wide variety of calculations that can be made using our model. Certain of our results call sharply into question the utility of excluding ‘trivial’ variation such as orthographic and spelling changes from stemmatic analysis.