865 resultados para Geometry texture
Resumo:
Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
The idea of buildings in harmony with nature can be traced back to ancient times. The increasing concerns on sustainability oriented buildings have added new challenges in building architectural design and called for new design responses. Sustainable design integrates and balances the human geometries and the natural ones. As the language of nature, it is, therefore, natural to assume that fractal geometry could play a role in developing new forms of aesthetics and sustainable architectural design. This paper gives a brief description of fractal geometry theory and presents its current status and recent developments through illustrative review of some fractal case studies in architecture design, which provides a bridge between fractal geometry and architecture design.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
Contemporary US sitcom is at an interesting crossroads: it has received an increasing amount of scholarly attention (e.g. Mills 2009; Butler 2010; Newman and Levine 2012; Vermeulen and Whitfield 2013), which largely understands it as shifting towards the aesthetically and narratively complex. At the same time, in the post-broadcasting era, US networks are particularly struggling for their audience share. With the days of blockbuster successes like Must See TV’s Friends (NBC 1994-2004) a distant dream, recent US sitcoms are instead turning towards smaller, engaged audiences. Here, a cult sensibility of intertextual in-jokes, temporal and narrational experimentation (e.g. flashbacks and alternate realities) and self-reflexive performance styles have marked shows including Community (NBC 2009-2015), How I Met Your Mother (CBS 2005-2014), New Girl (Fox 2011-present) and 30 Rock (NBC 2006-2013). However, not much critical attention has so far been paid to how these developments in textual sensibility in contemporary US sitcom may be influenced by, and influencing, the use of transmedia storytelling practices, an increasingly significant industrial concern and rising scholarly field of enquiry (e.g. Jenkins 2006; Mittell 2015; Richards 2010; Scott 2010; Jenkins, Ford and Green 2013). This chapter investigates this mutual influence between sitcom and transmedia by taking as its case studies two network shows that encourage invested viewership through their use of transtexts, namely How I Met Your Mother (hereafter HIMHM) and New Girl (hereafter NG). As such, it will pay particular attention to the most transtextually visible character/actor from each show: HIMYM’s Barney Stinson, played by Neil Patrick Harris, and NG’s Schmidt, played by Max Greenfield. This chapter argues that these sitcoms do not simply have their particular textual sensibility and also (happen to) engage with transmedia practices, but that the two are mutually informing and defining. This chapter explores the relationships and interplay between sitcom aesthetics, narratives and transmedia storytelling (or industrial transtexts), focusing on the use of multiple delivery channels in order to disperse “integral elements of a fiction” (Jenkins, 2006 95-6), by official entities such as the broadcasting channels. The chapter pays due attention to the specific production contexts of both shows and how these inform their approaches to transtexts. This chapter’s conceptual framework will be particularly concerned with how issues of texture, the reality envelope and accepted imaginative realism, as well as performance and the actor’s input inform and illuminate contemporary sitcoms and transtexts, and will be the first scholarly research to do so. It will seek out points of connections between two (thus far) separate strands of scholarship and will move discussions on transtexts beyond the usual genre studied (i.e. science-fiction and fantasy), as well as make a contribution to the growing scholarship on contemporary sitcom by approaching it from a new critical angle. On the basis that transmedia scholarship stands to benefit from widening its customary genre choice (i.e. telefantasy) for its case studies and from making more use of in-depth close analysis in its engagement with transtexts, the chapter argues that notions of texture, accepted imaginative realism and the reality envelope, as well as performance and the actor’s input deserve to be paid more attention to within transtext-related scholarship.
Resumo:
An exhibition that examines the legacy and future of Constructivist and Geometric art
Resumo:
By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.
Resumo:
In this paper, we present a study on a deterministic partially self-avoiding walk (tourist walk), which provides a novel method for texture feature extraction. The method is able to explore an image on all scales simultaneously. Experiments were conducted using different dynamics concerning the tourist walk. A new strategy, based on histograms. to extract information from its joint probability distribution is presented. The promising results are discussed and compared to the best-known methods for texture description reported in the literature. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Texture is one of the most important visual attributes for image analysis. It has been widely used in image analysis and pattern recognition. A partially self-avoiding deterministic walk has recently been proposed as an approach for texture analysis with promising results. This approach uses walkers (called tourists) to exploit the gray scale image contexts in several levels. Here, we present an approach to generate graphs out of the trajectories produced by the tourist walks. The generated graphs embody important characteristics related to tourist transitivity in the image. Computed from these graphs, the statistical position (degree mean) and dispersion (entropy of two vertices with the same degree) measures are used as texture descriptors. A comparison with traditional texture analysis methods is performed to illustrate the high performance of this novel approach. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recently, the deterministic tourist walk has emerged as a novel approach for texture analysis. This method employs a traveler visiting image pixels using a deterministic walk rule. Resulting trajectories provide clues about pixel interaction in the image that can be used for image classification and identification tasks. This paper proposes a new walk rule for the tourist which is based on contrast direction of a neighborhood. The yielded results using this approach are comparable with those from traditional texture analysis methods in the classification of a set of Brodatz textures and their rotated versions, thus confirming the potential of the method as a feasible texture analysis methodology. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We apply the master equation technique to calculate shot noise in a system composed of single level quantum dot attached to a normal metal lead and to a ferromagnetic lead (NM-QD-FM). It is known that this system operates as a spin-diode, giving unpolarized currents for forward bias and polarized current for reverse bias. This effect is observed when only one electron can tunnel at a time through the dot, due to the strong intradot Coulomb interaction. We find that the shot noise also presents a signature of this spin-diode effect, with a super-Poissonian shot noise for forward and a sub-Poissonian shot noise for reverse bias voltages. The shot noise thus can provide further experimental evidence of the spin-rectification in the NM-QD-FM geometry.
Resumo:
The sphene-centered ocellar texture consists of leucocratic ocelli with sphene (titanite) crystals at the center, enclosed in a biotite-rich matrix. This texture has been recognized worldwide in hybrid intermediate rocks. On the basis of structural, petrological, and geochronological data from selected outcrops of the Variscan Ribadelago pluton (NW Iberian Massif), we propose that the ocelli were formed by migration and accumulation of a residual melt through a plagioclase- and biotite-dominated crystalline framework. At the late stage of crystallization, the magma acted as a hyperdense suspension and reacted to the pressure gradient caused by the regional stress field, entering the domain of grain-supported flow. Microstructures reveal that aligned crystal domains arose in the crystal framework from the shearing and compaction of the crystal mush and behaved as magmatic microshears. Relative displacement of adjacent crystal clusters along these microshears corresponded to the onset of Reynolds dilatancy that generated an expansion of the crystal mush, involving melt migration and pore aperture. The mineralogy of the ocelli, dominated by andesine and sphene, represents the composition of the migrating melt. The chemistry of this late, Ti-rich melt stems from the incongruent melting of biotite. Magmatic sphene from the ocelli yields a U-Pb age of 317 +/- 1 Ma, which represents the final crystallization of the hybridized magmatic system. Moreover, this texture offers an opportunity to better understand the rheological behavior of highly crystallized magmas.
Resumo:
The crystal-plastic behavior of quartz mylonites from the Ribeira Shear Zone (SE Brazil), a major strike-slip structure that was active during a prograde metamorphic phase related to the Neoproterozoic Brasiliano-Pan African Orogeny, was investigated using a multi-method approach. Geothermobarometry results indicate deformational conditions ranging from similar to 300 to similar to 630 degrees C and 500-700 MPa. A strong correlation between mapped metamorphic zones and a dominance of different dynamic recrystallization mechanisms of quartz occurs within the mylonite zone. Bulging recrystallization (BLG) dominates within the chlorite zone between 300 and 410 degrees C, subgrain rotation recrystallization (SGR) operates within the biotite zone from 410 to 520 degrees C, and grain boundary migration recrystallization (GBM) dominates in the garnet zone above 520 degrees C. The development of quartz c-axis textures is mainly governed by temperature and dynamic recrystallization mechanisms. Textures from BLG zone mylonites are characterized by maxima around Z; SGR zone mylonites display single girdles or asymmetric type I crossed girdles; and GBM zone mylonites comprise maxima around Y and intermediate between X and Z. The scarcity or absence of water-bearing fluid inclusions in quartz mylonites from the SGR and GBM zones, which are dominated by carbonic inclusions, suggests water-deficient conditions, whereas BLG zone mylonites are dominated by water-bearing inclusions. This evidence indicates that water was available in the protoliths but has been eliminated with increasing deformation and deformation temperature. No effect of the water content variation on the quartz microstructural and recrystallized grain size evolution was detected, and little influence on c-axis texture development was observed. Most of the fluid inclusion densities were reequilibrated during the shear zone exhumation history, recording a decompression in the range of 300-500 MPa, while microstructural reequilibration effects related to the prograde metamorphism are largely preserved. Fluid inclusion microstructures and densities from two SGR zone samples preserved evidence for a near isothermal compression within the interior of the Ribeira Shear Zone during the prograde metamorphism. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a 3D face photography system based on a facial expression training dataset, composed of both facial range images (3D geometry) and facial texture (2D photography). The proposed system allows one to obtain a 3D geometry representation of a given face provided as a 2D photography, which undergoes a series of transformations through the texture and geometry spaces estimated. In the training phase of the system, the facial landmarks are obtained by an active shape model (ASM) extracted from the 2D gray-level photography. Principal components analysis (PCA) is then used to represent the face dataset, thus defining an orthonormal basis of texture and another of geometry. In the reconstruction phase, an input is given by a face image to which the ASM is matched. The extracted facial landmarks and the face image are fed to the PCA basis transform, and a 3D version of the 2D input image is built. Experimental tests using a new dataset of 70 facial expressions belonging to ten subjects as training set show rapid reconstructed 3D faces which maintain spatial coherence similar to the human perception, thus corroborating the efficiency and the applicability of the proposed system.