906 resultados para Genetic programming (Computer science)
Resumo:
Srinivasan, A., King, R. D. and Bain, M.E. (2003) An Empirical Study of the Use of Relevance Information in Inductive Logic Programming. Journal of Machine Learning Research. 4(Jul):369-383
Resumo:
David P. Enot and Ross D. King (2003). Structure based drug design with inductive logic programming. The ACS National Meeting Spring 2003, New Orleans
Resumo:
David P. Enot and Ross D. King (2002) The use of Inductive Logic Programming in drug design. Proceedings of the 14th EuroQSAR Symposium (EuroQSAR 2002). Blackwell Publishing, p247-250
Resumo:
Ellis, D. I., Broadhurst, D., Kell, D. B., Rowland, J. J., Goodacre, R. (2002). Rapid and quantitative detection of the microbial spoilage of meat by Fourier Transform Infrared Spectroscopy and machine learning. ? Applied and Environmental Microbiology, 68, (6), 2822-2828 Sponsorship: BBSRC
Resumo:
Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., and Thomas, L. 2006. A cognitive approach to identifying measurable milestones for programming skill acquisition. SIGCSE Bull. 38, 4 (Dec. 2006), 182-194.
Resumo:
Thomas, L., Ratcliffe, M., and Robertson, A. 2003. Code warriors and code-a-phobes: a study in attitude and pair programming. SIGCSE Bull. 35, 1 (Jan. 2003), 363-367.
Resumo:
Thomas, L., Ratcliffe, M., Woodbury, J., and Jarman, E. 2002. Learning styles and performance in the introductory programming sequence. SIGCSE Bull. 34, 1 (Mar. 2002), 33-37.
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.
Resumo:
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.
Resumo:
In this paper, we study the efficacy of genetic algorithms in the context of combinatorial optimization. In particular, we isolate the effects of cross-over, treated as the central component of genetic search. We show that for problems of nontrivial size and difficulty, the contribution of cross-over search is marginal, both synergistically when run in conjunction with mutation and selection, or when run with selection alone, the reference point being the search procedure consisting of just mutation and selection. The latter can be viewed as another manifestation of the Metropolis process. Considering the high computational cost of maintaining a population to facilitate cross-over search, its marginal benefit renders genetic search inferior to its singleton-population counterpart, the Metropolis process, and by extension, simulated annealing. This is further compounded by the fact that many problems arising in practice may inherently require a large number of state transitions for a near-optimal solution to be found, making genetic search infeasible given the high cost of computing a single iteration in the enlarged state-space.
Resumo:
Inferring types for polymorphic recursive function definitions (abbreviated to polymorphic recursion) is a recurring topic on the mailing lists of popular typed programming languages. This is despite the fact that type inference for polymorphic recursion using for all-types has been proved undecidable. This report presents several programming examples involving polymorphic recursion and determines their typability under various type systems, including the Hindley-Milner system, an intersection-type system, and extensions of these two. The goal of this report is to show that many of these examples are typable using a system of intersection types as an alternative form of polymorphism. By accomplishing this, we hope to lay the foundation for future research into a decidable intersection-type inference algorithm. We do not provide a comprehensive survey of type systems appropriate for polymorphic recursion, with or without type annotations inserted in the source language. Rather, we focus on examples for which types may be inferred without type annotations.
Resumo:
The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.
Resumo:
A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems
Resumo:
A well-cited paper suggesting fuzzy coding as an alternative to the conventional binary, grey and floating-point representations used in genetic algorithms.
Resumo:
The technical challenges in the design and programming of signal processors for multimedia communication are discussed. The development of terminal equipment to meet such demand presents a significant technical challenge, considering that it is highly desirable that the equipment be cost effective, power efficient, versatile, and extensible for future upgrades. The main challenges in the design and programming of signal processors for multimedia communication are, general-purpose signal processor design, application-specific signal processor design, operating systems and programming support and application programming. The size of FFT is programmable so that it can be used for various OFDM-based communication systems, such as digital audio broadcasting (DAB), digital video broadcasting-terrestrial (DVB-T) and digital video broadcasting-handheld (DVB-H). The clustered architecture design and distributed ping-pong register files in the PAC DSP raise new challenges of code generation.