945 resultados para Generalized Weyl Fractional q-Integral Operator
Resumo:
Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.
Resumo:
M.Hieber, I.Wood: The Dirichlet problem in convex bounded domains for operators with L^\infty-coefficients, Diff. Int. Eq., 20, 7 (2007),721-734.
Resumo:
Z. Huang and Q. Shen. Transformation Based Interpolation with Generalized Representative Values. Proceedings of the 14th International Conference on Fuzzy Systems, pages 821-826.
Resumo:
Z. Huang and Q. Shen. Fuzzy interpolation with generalized representative values. Proceedings of the 2004 UK Workshop on Computational Intelligence, pages 161-171.
Resumo:
B.M. Brown, M. Marletta, S. Naboko, I. Wood: Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices, J. London Math. Soc., June 2008; 77: 700-718. The full text of this article will be made available in this repository in June 2009 Sponsorship: EPSRC,INTAS
Resumo:
A generalized Markov Brnching Process (GMBP) is a Markov branching model where the infinitesimal branching rates are modified with an interaction index. It is proved that there always exists only one GMBP. An associated differential-integral equation is derived. The extinction probalility and the mean and conditional mean extinction times are obtained. Ergodicity and stability of GMBP with resurrection are also considered. Easy checking criteria are established for ordinary and strong ergodicty. The equilibrium distribution is given in an elegant closed form. The probability meaning of our results is clear and thus explained.
Resumo:
It is shown how the fractional probability density diffusion equation for the diffusion limit of one-dimensional continuous time random walks may be derived from a generalized Markovian Chapman-Kolmogorov equation. The non-Markovian behaviour is incorporated into the Markovian Chapman-Kolmogorov equation by postulating a Levy like distribution of waiting times as a kernel. The Chapman-Kolmogorov equation so generalised then takes on the form of a convolution integral. The dependence on the initial conditions typical of a non-Markovian process is treated by adding a time dependent term involving the survival probability to the convolution integral. In the diffusion limit these two assumptions about the past history of the process are sufficient to reproduce anomalous diffusion and relaxation behaviour of the Cole-Cole type. The Green function in the diffusion limit is calculated using the fact that the characteristic function is the Mittag-Leffler function. Fourier inversion of the characteristic function yields the Green function in terms of a Wright function. The moments of the distribution function are evaluated from the Mittag-Leffler function using the properties of characteristic functions and a relation between the powers of the second moment and higher order even moments is derived. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The inertia-corrected Debye model of rotational Brownian motion of polar molecules was generalized by Coffey et al. [Phys. Rev. E, 65, 32 102 (2002)] to describe fractional dynamics and anomalous rotational diffusion. The linear- response theory of the normalized complex susceptibility was given in terms of a Laplace transform and as a function of frequency. The angular-velocity correlation function was parametrized via fractal Mittag-Leffler functions. Here we apply the latter method and complex-contour integral- representation methods to determine the original time-dependent amplitude as an inverse Laplace transform using both analytical and numerical approaches, as appropriate. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We introduce and study the notion of operator hyperreflexivity of subspace lattices. This notion is a natural analogue of the operator reflexivity and is related to hyperreflexivity of subspace lattices introduced by Davidson and Harrison.
Resumo:
We prove that any bounded linear operator on $L_p[0,1]$ for $1\leq p
Resumo:
We propose transmit antenna selection with receive generalized selection combining (TAS/GSC) in dual-hop cognitive decode-and-forward (DF) relay networks for reliability enhancement and interference relaxation. In this paradigm, a single antenna which maximizes the receive signal-to-noise ratio (SNR) is selected at the secondary transmitter and a subset of receive antennas with the highest SNRs are combined at the secondary receiver. To demonstrate the impact of multiple primary users on the cognitive relay network, we derive new closed-form expressions for the exact and asymptotic outage probability with TAS/GSC in the secondary network. Several important design insights are reached. We corroborate that the full diversity gain is achieved, which is entirely determined by the total number of antennas in the secondary network. The negative impact of the primary network on the secondary network is reflected in the SNR gain.
Resumo:
We consider transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decodeand-forward (DF) relaying in Nakagami-m fading channels. In an effort to assess the performance, the probability density function and the cumulative distribution function of the endto-end SNR are derived using the moment generating function, from which new exact closed-form expressions for the outage probability and the symbol error rate are derived. We then derive a new closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expressions for the outage probability and the symbol error rate, as well as the high SNR approximations of the ergodic capacity, we establish new design insights under the two distinct constraint scenarios: 1) proportional interference power constraint, and 2) fixed interference power constraint. Several pivotal conclusions are reached. For the first scenario, the full diversity order of the
outage probability and the symbol error rate is achieved, and the high SNR slope of the ergodic capacity is 1/2. For the second scenario, the diversity order of the outage probability and the symbol error rate is zero with error floors, and the high SNR slope of the ergodic capacity is zero with capacity ceiling.
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
This paper studies fractional variable structure controllers. Two cases are considered namely, the sliding reference model and the control action, that are generalized from integer into fractional orders. The test bed consists in a mechanical manipulator and the effect of the fractional approach upon the system performance is evaluated. The results show that fractional dynamics, both in the switching surface and the control law are important design algorithms in variable structure controllers.
Resumo:
This paper is about a hierarchical structure with an event-based supervisor in a higher level and a fractional-order proportional integral (FOPI) in a lower level applied to a wind turbine. The event-based supervisor analyzes the operation conditions to determine the state of the wind turbine. This controller operate in the full load region and the main objective is to capture maximum power generation while ensuring the performance and reliability required for a wind turbine to be integrated into an electric grid. The main contribution focus on the use of fractional-order proportional integral controller which benefits from the introduction of one more tuning parameter, the integral fractional-order, taking advantage over integer order proportional integral (PI) controller. Comparisons between fractional-order pitch control and a default proportional integral pitch controller applied to a wind turbine benchmark are given and simulation results by Matlab/Simulink are shown in order to prove the effectiveness of the proposed approach.