985 resultados para Fungal endophytes
Resumo:
In a glasshouse experiment using potted strawberry plants (cv. Cambridge Favourite) as hosts, the effect of selected fungal antagonists grown on 25 or 50 g of mushroom compost containing autoclaved mycelia of Agaricus bisporus, or wheat bran was evaluated against Armillaria mellea. Another glasshouse experiment tested the effect of application time of the antagonists in relation to inoculations with the pathogen. A significant interaction was found between the antagonists, substrates and dose rates. All the plants treated with Chaetomium olivaceum isolate Co on 50 g wheat bran survived until the end of the experiment which lasted 482 days, while none of them survived when this antagonist was added to the roots of the plants on 25 g wheat bran or 25 or 50 g mushroom compost. Dactylium dendroides isolate SP had a similar effect, although with a lower host survival rate of 33.3%. Trichoderma hamatum isolate Tham 1 and T. harzianum isolate Th23 protected 33.3% of the plants when added on 50 g and none when added on 25 g of either substrate, while 66.7% of the plants treated with T. harzianum isolate Th2 on 25 g, or T viride isolate TO on 50 g wheat bran, survived. Application of the antagonists on mushroom compost initially resulted in development of more leaves and healthier plants, but this effect was not sustained. Eventually, plants treated with the antagonists on wheat bran had significantly more leaves and higher health scores. The plants treated with isolate Th2 and inoculated with Armillaria at the same time had a survival rate of 66.7% for the duration of the experiment (475 days), while none of them survived that long when the antagonist and pathogen were applied with an interval of 85 days in either sequence. C. olivaceum isolate Co showed a protective effect only, as 66.7% of the plants survived when they were treated with the antagonist 85 days before inoculation with the pathogen, while none of them survived when the antagonist and pathogen were applied together or the infection preceded protection.
Resumo:
Several in vitro and in vivo experiments were conducted to develop an effective technique for culturing potential fungal antagonists (isolates of Trichoderma harzianum, Dactylium dendroides, Chaetomium olivaceum and one unidentified fungus) selected for activity against Armillaria mellea. The antagonists were inoculated onto (1) live spawn of the oyster mu shroom (Pleurotus ostreatus), (2) extra-moistened or sucrose-enriched mushroom composts containing living or autoclaved mycelia of P. ostreatus or Agaricus bisporus (button mushroom), (3) pasteurized compost with or without A. bisporus mycelium, wheat bran, wheat germ and (4) spent mushroom composts with living mycelia of A. bisporus, P. ostreatus or Lentinus edodes (the Shiitake mushroom). In one experiment, a representative antagonist (isolate Th2 of T. harzianum) was grown together with the A. bisporus mycelium, while in another one, the antagonist was first grown on wheat germ or wheat bran and then on mushroom compost with living mycelium of A. bisporus. Some of the carrier substrates were then added to the roots of potted strawberry plants in the glasshouse to evaluate their effectiveness against the disease. The antagonists failed to grow on the spawn of P. ostreatus even after reinoculations and prolonged incubation. Providing extra moisture or sucrose enrichment also did not improve the growth of Th2 on mushroom composts in the presence of living mycelia of A. bisporus or P. ostreatus. The antagonist, however, grew rapidly and extensively on mushroom compost with autoclaved mycelia, and also on wheat germ and wheat bran. Colonization of the substrates by the antagonist was positively correlated with its effectiveness in the glasshouse studies. Whereas only 33.3% of the inoculated control plants survived in one experiment monitored for 560 days, 100% survival was achieved when Th2 was applied on wheat germ or wheat bran. Growth of the antagonist alone on pasteurized or sterilized compost (without A. bisporus mycelia) and simultaneous growth of the antagonist and mushroom on pasteurized compost did not improve survival over the inoculated controls, but growth over mushroom compost with the living mycelium resulted in 50% survival rate. C. olivaceum isolate Co was the most effective, resulting in overall survival rate of 83.3% compared with only 8.3% for the inoculated and 100% for the uninoculated (healthy) controls. This antagonist gave the highest survival rate of 100% on spent mushroom compost with L. edodes. T harzianum isolate Th23, with 75% survival rate, was the most effective on spent mushroom compost with P. ostreatus, while D. dendroides isolate SP resulted in equal survival rates of 50% on all the three mushroom composts.
Resumo:
Seventeen fungal isolates were tested in vitro as potential antagonists of two isolates of the root rot pathogen, Armillaria mellea. Some of the isolates were also added on mushroom composts with living mycelia to the roots of Armillaria-inoculated potted strawberry plants in the glasshouse to find out if they had the same degree of efficacy against the disease. Dactylium dendroides isolate SP was the most effective in reducing mycelial growth of A. mellea isolate 1 (Am1), followed by Trichoderma harzianum isolate Th2 and T. viride isolate Tv4. Th2, Th22, Tv3 and SP grew extensively over Am1 colonies, disintegrating the rhizomorphs. Isolate Tham1 of T hamatum was the most effective in reducing mycelial growth of A. mellea isolate 2 (Am2), followed by Tv3. Th12, Th22, Tv1, Tv3 and SP inhibited the initiation and growth of rhizomorphs of Am2. Regeneration tests showed that both Am1 and Am2 attacked by Trichoderma isolates and SP were no longer viable. Th23 and SP were almost as effective in vivo as in vitro. But isolate Co of Chaetomium olivaceum, which was ineffective in vitro, was found effective in vivo. Conversely, Th2, which exhibited good antagonistic activity in vitro, performed poorly in vivo. These results show that the in vitro and in vivo efficacies of potential antagonists may not necessarily be closely correlated. Hence, there is a danger that potentially effective isolates may be discarded if decisions are made only on the basis of preliminary screening tests carried out under laboratory conditions.
Resumo:
The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.
Resumo:
To further our understanding of powdery mildew biology during infection, we undertook a systematic shotgun proteomics analysis of the obligate biotroph Blumeria graminis f. sp. hordei at different stages of development in the host. Moreover we used a proteogenomics approach to feed information into the annotation of the newly sequenced genome. We analyzed and compared the proteomes from three stages of development representing different functions during the plant-dependent vegetative life cycle of this fungus. We identified 441 proteins in ungerminated spores, 775 proteins in epiphytic sporulating hyphae, and 47 proteins from haustoria inside barley leaf epidermal cells and used the data to aid annotation of the B. graminis f. sp. hordei genome. We also compared the differences in the protein complement of these key stages. Although confirming some of the previously reported findings and models derived from the analysis of transcriptome dynamics, our results also suggest that the intracellular haustoria are subject to stress possibly as a result of the plant defense strategy, including the production of reactive oxygen species. In addition, a number of small haustorial proteins with a predicted N-terminal signal peptide for secretion were identified in infected tissues: these represent candidate effector proteins that may play a role in controlling host metabolism and immunity. Molecular & Cellular Proteomics 8: 2368-2381, 2009.
Resumo:
Truly continuous solid-state fermentations with operating times of 2-3 weeks were conducted in a prototype bioreactor for the production of fungal (Penicillium glabrum) tannase from a tannin-containing model substrate. Substantial quantities of the enzyme were synthesized throughout the operating periods and (imperfect) steady-state conditions seemed to be achieved soon after start-up of the fermentations. This demonstrated for the first time the possibility of conducting solid-state fermentations in the continuous mode and with a constant noninoculated feed. The operating variables and fermentation conditions in the bioreactor were sufficiently well predicted for the basic reinoculation concept to succeed. However, an incomplete understanding of the microbial mechanisms, the experimental system, and their interaction indicated the need for more research in this novel area of solid-state fermentation. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Whilst there is increasing evidence tht the outcome of the interation between a pathogen and a host is dependent on protein-protein interactions, very little information is available on in planta proteomics of biotrophic plant pathogens. Here a proteogenomic approach has been employed to supplement the annotation of the recently sequenced genome and to cast light on the biology of the infection process of the economically important barley powdery mildew pathogen, Blumeria graminis f.sp hordei
Resumo:
Plant pathology has a long-standing tradition of classifying microbes as pathogens, endophytes or saprophytes. Lifestyles of pathogens are categorized as biotrophic, necrotrophic or hemibiotrophic. Botrytis species are considered by many to be archetypal examples of necrotrophic fungi, with B. cinerea being the most extensively studied species because of its broad host range and economic impact. In this review, we discuss recent work which illustrates that B. cinerea is capable of colonizing plants internally, presumably as an endophyte, without causing any disease or stress symptoms. The extent of the facultative endophytic behaviour of B. cinerea and its relevance in the ecology and disease epidemiology may be vastly underestimated. Moreover, we discuss the recent discovery of a novel Botrytis species, B. deweyae, which normally grows as an endophyte in ornamental daylilies (Hemerocallis), but displays facultative pathogenic behaviour, and is increasingly causing economic damage. We propose that the emergence of endophytes ‘gone rogue’ as novel diseases may be related to increased inbreeding of hybrid lines and reduced genetic diversity. These observations lead us to argue that the sometimes inflexible classification of pathogenic microbes by their lifestyles requires serious reconsideration. There is much more variety to the interactions of Botrytis with its hosts than the eye (or the plant pathologist) can see, and this may be true for other microbes interacting with plants.
Resumo:
Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.
Resumo:
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution.
Resumo:
Early establishment of endophytes can play a role in pathogen suppression and improve seedling development. One route for establishment of endophytes in seedlings is transmission of bacteria from the parent plant to the seedling via the seed. In wheat seeds, it is not clear whether this transmission route exists, and the identities and location of bacteria within wheat seeds are unknown. We identified bacteria in the wheat (Triticum aestivum) cv. Hereward seed environment using embryo excision to determine the location of the bacterial load. Axenic wheat seedlings obtained with this method were subsequently used to screen a putative endophyte bacterial isolate library for endophytic competency. This absence of bacteria recovered from seeds indicated low bacterial abundance and/or the presence of inhibitors. Diversity of readily culturable bacteria in seeds was low with 8 genera identified, dominated by Erwinia and Paenibacillus. We propose that anatomical restrictions in wheat limit embryo associated vertical transmission, and that bacterial load is carried in the seed coat, crease tissue and endosperm. This finding facilitates the creation of axenic wheat plants to test competency of putative endophytes and also provides a platform for endophyte competition, plant growth, and gene expression studies without an indigenous bacterial background.
Resumo:
The aim of this study was to estimate the indoor and outdoor concentrations of fungal spores in the Metropolitan Area of Sao Paulo (MASP), collected at different sites in winter/spring and summer seasons. The techniques adopted included cultivation (samples collected with impactors) and microscopic enumeration (samples collected with impingers). The overall results showed total concentrations of fungal spores as high as 36,000 per cubic meter, with a large proportion of non culturable spores (around 91% of the total). Penicillium sp. and Aspergillus sp. were the dominant species both indoors and outdoors, in all seasons tested, occurring in more than 30% of homes at very high concentrations of culturable airborne fungi [colony forming units(CFU) m(-3)]. There was no significant difference between indoor and outdoor concentrations. The total fungal spore concentration found in winter was 19% higher than that in summer. Heat and humidity were the main factors affecting fungal growth; however, a non-linear response to these factors was found. Thus, temperatures below 16A degrees C and above 25A degrees C caused a reduction in the concentration (CFU m(-3)) of airborne fungi, which fits with MASP climatalogy. The same pattern was observed for humidity, although not as clearly as with temperature given the usual high relative humidity (above 70%) in the study area. These results are relevant for public health interventions that aim to reduce respiratory morbidity among susceptible populations.
Resumo:
Filamentous fungi and yeasts associated with the marine algae Adenocystis utricularis, Desmarestia anceps, and Palmaria decipiens from Antarctica were studied. A total of 75 fungal isolates, represented by 27 filamentous fungi and 48 yeasts, were isolated from the three algal species and identified by morphological, physiological, and sequence analyses of the internal transcribed spacer region and D1/D2 variable domains of the large-subunit rRNA gene. The filamentous fungi and yeasts obtained were identified as belonging to the genera Geomyces, Antarctomyces, Oidiodendron, Penicillium, Phaeosphaeria, Aureobasidium, Cryptococcus, Leucosporidium, Metschnikowia, and Rhodotorula. The prevalent species were the filamentous fungus Geomyces pannorum and the yeast Metschnikowia australis. Two fungal species isolated in our study, Antarctomyces psychrotrophicus and M. australis, are endemic to Antarctica. This work is the first study of fungi associated with Antarctic marine macroalgae, and contributes to the taxonomy and ecology of the marine fungi living in polar environments. These fungal species may have an important role in the ecosystem and in organic matter recycling.
Resumo:
Candida albicans is the most common opportunistic fungal pathogen and causes local and systemic disease in immunocompromised patients. Alveolar macrophages (AMs) are pivotal for the clearance of C. albicans from the lung. Activated AMs secrete 5-lipoxygenase-derived leukotrienes (LTs), which in turn enhance phagocytosis and microbicidal activity against a diverse array of pathogens. Our aim was to investigate the role of LTB(4) and LTD(4) in AM antimicrobial functions against C. albicans and the signaling pathways involved. Pharmacologic and genetic inhibition of LT biosynthesis as well as receptor antagonism reduced phagocytosis of C. albicans when compared with untreated or WT controls. Conversely, exogenous LTs of both classes augmented base-line C. albicans phagocytosis by AMs. Although LTB(4) enhanced mainly mannose receptor-dependent fungal ingestion, LTD(4) enhanced mainly dectin-1 receptor-mediated phagocytosis. LT enhancement of yeast ingestion was dependent on protein kinase C-delta (PKC delta) and PI3K but not PKC alpha and MAPK activation. Both LTs reduced activation of cofilin-1, whereas they enhanced total cellular F-actin; however, LTB(4) accomplished this through the activation of LIM kinases (LIMKs) 1 and 2, whereas LTD(4) did so exclusively via LIMK-2. Finally, both exogenous LTB(4) and LTD(4) enhanced AM fungicidal activity in an NADPH oxidase-dependent manner. Our data identify LTB(4) and LTD(4) as key mediators of innate immunity against C. albicans, which act by both distinct and conserved signaling mechanisms to enhance multiple antimicrobial functions of AMs.