873 resultados para Functions of complex variables.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superprotonic phase transitions and thermal behaviors of three complex solid acid systems are presented, namely Rb3H(SO4)2-RbHSO4 system, Rb3H(SeO4)2-Cs3H(SeO4)2 solid solution system, and Cs6(H2SO4)3(H1.5PO4)4. These material systems present a rich set of phase transition characteristics that set them apart from other, simpler solid acids. A.C. impedance spectroscopy, high-temperature X-ray powder diffraction, and thermal analysis, as well as other characterization techniques, were employed to investigate the phase behavior of these systems.

Rb3H(SO4)2 is an atypical member of the M3H(XO4)2 class of compounds (M = alkali metal or NH4+ and X = S or Se) in that a transition to a high-conductivity state involves disproportionation into two phases rather than a simple polymorphic transition [1]. In the present work, investigations of the Rb3H(SO4)2-RbHSO4 system have revealed the disproportionation products to be Rb2SO4 and the previously unknown compound Rb5H3(SO4)4. The new compound becomes stable at a temperature between 25 and 140 °C and is isostructural to a recently reported trigonal phase with space group P3̅m of Cs5H3(SO4)4 [2]. At 185 °C the compound undergoes an apparently polymorphic transformation with a heat of transition of 23.8 kJ/mol and a slight additional increase in conductivity.

The compounds Rb3H(SeO4)2 and Cs3H(SeO4)2, though not isomorphous at ambient temperatures, are quintessential examples of superprotonic materials. Both adopt monoclinic structures at ambient temperatures and ultimately transform to a trigonal (R3̅m) superprotonic structure at slightly elevated temperatures, 178 and 183 °C, respectively. The compounds are completely miscible above the superprotonic transition and show extensive solubility below it. Beyond a careful determination of the phase boundaries, we find a remarkable 40-fold increase in the superprotonic conductivity in intermediate compositions rich in Rb as compared to either end-member.

The compound Cs6(H2SO4)3(H1.5PO4)4 is unusual amongst solid acid compounds in that it has a complex cubic structure at ambient temperature and apparently transforms to a simpler cubic structure of the CsCl-type (isostructural with CsH2PO4) at its transition temperature of 100-120 °C [3]. Here it is found that, depending on the level of humidification, the superprotonic transition of this material is superimposed with a decomposition reaction, which involves both exsolution of (liquid) acid and loss of H2O. This reaction can be suppressed by application of sufficiently high humidity, in which case Cs6(H2SO4)3(H1.5PO4)4 undergoes a true superprotonic transition. It is proposed that, under conditions of low humidity, the decomposition/dehydration reaction transforms the compound to Cs6(H2-0.5xSO4)3(H1.5PO4)4-x, also of the CsCl structure type at the temperatures of interest, but with a smaller unit cell. With increasing temperature, the decomposition/dehydration proceeds to greater and greater extent and unit cell of the solid phase decreases. This is identified to be the source of the apparent negative thermal expansion behavior.

References

[1] L.A. Cowan, R.M. Morcos, N. Hatada, A. Navrotsky, S.M. Haile, Solid State Ionics 179 (2008) (9-10) 305.

[2] M. Sakashita, H. Fujihisa, K.I. Suzuki, S. Hayashi, K. Honda, Solid State Ionics 178 (2007) (21-22) 1262.

[3] C.R.I. Chisholm, Superprotonic Phase Transitions in Solid Acids: Parameters affecting the presence and stability of superprotonic transitions in the MHnXO4 family of compounds (X=S, Se, P, As; M=Li, Na, K, NH4, Rb, Cs), Materials Science, California Institute of Technology, Pasadena, California (2003).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

These studies explore how, where, and when representations of variables critical to decision-making are represented in the brain. In order to produce a decision, humans must first determine the relevant stimuli, actions, and possible outcomes before applying an algorithm that will select an action from those available. When choosing amongst alternative stimuli, the framework of value-based decision-making proposes that values are assigned to the stimuli and that these values are then compared in an abstract “value space” in order to produce a decision. Despite much progress, in particular regarding the pinpointing of ventromedial prefrontal cortex (vmPFC) as a region that encodes the value, many basic questions remain. In Chapter 2, I show that distributed BOLD signaling in vmPFC represents the value of stimuli under consideration in a manner that is independent of the type of stimulus it is. Thus the open question of whether value is represented in abstraction, a key tenet of value-based decision-making, is confirmed. However, I also show that stimulus-dependent value representations are also present in the brain during decision-making and suggest a potential neural pathway for stimulus-to-value transformations that integrates these two results.

More broadly speaking, there is both neural and behavioral evidence that two distinct control systems are at work during action selection. These two systems compose the “goal-directed system”, which selects actions based on an internal model of the environment, and the “habitual” system, which generates responses based on antecedent stimuli only. Computational characterizations of these two systems imply that they have different informational requirements in terms of input stimuli, actions, and possible outcomes. Associative learning theory predicts that the habitual system should utilize stimulus and action information only, while goal-directed behavior requires that outcomes as well as stimuli and actions be processed. In Chapter 3, I test whether areas of the brain hypothesized to be involved in habitual versus goal-directed control represent the corresponding theorized variables.

The question of whether one or both of these neural systems drives Pavlovian conditioning is less well-studied. Chapter 4 describes an experiment in which subjects were scanned while engaged in a Pavlovian task with a simple non-trivial structure. After comparing a variety of model-based and model-free learning algorithms (thought to underpin goal-directed and habitual decision-making, respectively), it was found that subjects’ reaction times were better explained by a model-based system. In addition, neural signaling of precision, a variable based on a representation of a world model, was found in the amygdala. These data indicate that the influence of model-based representations of the environment can extend even to the most basic learning processes.

Knowledge of the state of hidden variables in an environment is required for optimal inference regarding the abstract decision structure of a given environment and therefore can be crucial to decision-making in a wide range of situations. Inferring the state of an abstract variable requires the generation and manipulation of an internal representation of beliefs over the values of the hidden variable. In Chapter 5, I describe behavioral and neural results regarding the learning strategies employed by human subjects in a hierarchical state-estimation task. In particular, a comprehensive model fit and comparison process pointed to the use of "belief thresholding". This implies that subjects tended to eliminate low-probability hypotheses regarding the state of the environment from their internal model and ceased to update the corresponding variables. Thus, in concert with incremental Bayesian learning, humans explicitly manipulate their internal model of the generative process during hierarchical inference consistent with a serial hypothesis testing strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author summarises observations on the behaviour of Polyphemus pediculus and functions of its extremities in the process of feeding. The crustacean Polyphemus pediculus seizes its prey, kills it and pulverises its food with the help of its extremities. Therefore for a study of its feeding method was necessary not only to have been acquainted in detail with the structure of its extremities, but also to have observed their interaction for the accomplishment of the stated functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.

We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.