985 resultados para Frequency dependence
Resumo:
The pressure behavior of Mn2+ emission in the 10-, 4.5-, 3.5-, 3-, and 1-nm-sized ZnS:Mn2+ nanoparticles is investigated. The emission shifts to lower energies with increasing pressure, and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS:Mn2+ nanoparticles than in bulk. The pressure coefficient increases with the decrease in particle size with the 1-nm-sized particles as an exception. Pressure coefficient calculations based on the crystal field theory are in agreement with the experimental results. The pressure dependence of the emission intensity is also size dependent. For nanoparticles 1 and 3 nm in size, the luminescence intensity of Mn2+ decreases dramatically with increasing pressure, while, for bulk and particles with average sizes of 3.5, 4.5, and 10 nm, the luminescence intensity of Mn2+ is virtually unchanged at different pressures. The bandwidth increases faster with increasing pressure for smaller particles. This is perhaps due to the fact that there are more Mn2+ ions at the near-surface sites and because the phonon frequency is greater for smaller particles. These new phenomena provide some insight into the luminescence behavior of Mn2+ in ZnS:Mn2+ nanoparticles.
Resumo:
An anomalous behavior of the current self-oscillation frequency is observed in the dynamic de voltage bands, emerging from each sawtoothlike branch of the current-voltage characteristic of a doped GaAs/A1As superlattice in the transition process from static to dynamic electric field domain formations. Varying the applied de voltage at a fixed temperature, we find that the frequency increases while the averaged current decreases. Inside each voltage band, the frequency has a strong voltage dependence in the temperature range where the averaged current changes with the applied de voltage. This dependence can be understood in terms of motion of the system along a limit cycle.
Resumo:
Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.
Resumo:
The paper investigates the relationships between the occurrence of thunderstorms with heavy precipitation (> 30 mm) and atmospheric circulation types. The study covers the period 1951–1998 and is based on a matching span of records of thunderstorm occurrence and daily precipitation totals at 47 weather stations in Poland. A catalogue of circulation types by Osuchowska-Klein, data on frequency of fronts over south-eastern Poland by Niedźwiedź and weather maps were used. In Poland, days with a thunderstorm and more than 30 mm of precipitation are extremely rare and occur mainly in summer. Their recurrence period amounts to about two to four years, with the exception of mountain areas (southern Poland) where they occur nearly every year. The heaviest precipitation on a day with thunderstorm, 166.1 mm, was recorded at a high-mountain station on Mt. Kasprowy Wierch. Apart from this station the highest precipitation was 141.0 mm and only eight stations had at least one record of more than 100 mm. Four regions characterised by different circulation types most favourable for the occurrence of thunderstorms with heavy precipitation were identified. In all of them southerly advection was most favourable for the occurrence of the phenomena studied (Sc, SEc, Sa/c), but that effect was especially prominent in the south-western region. Most of the days with thunderstorm and heavy precipitation coincided with the passing of an atmospheric front over Poland (53.8–81.9% days depending on the station). Days with air-mass thunderstorm and heavy precipitation were rare and mostly occurred in areas of variable topography.
Resumo:
Objectives: This study examined: (i) the prevalence of trauma in a bipolar disorder (BD) sample, and (ii) how trauma histories mediated by interpersonal difficulties and alcohol dependence impact on the severity of BD. The prevalence of posttraumatic stress disorder (PTSD) and its relationship to outcomes in BD were also examined.
Methods: Sixty participants were recruited from a geographically well-defined mental health service in Northern Ireland. Self-reported trauma histories, PTSD, interpersonal difficulties and alcohol dependence and were examined in relation to illness severity.
Results: A high prevalence of trauma was found. Trauma predicted the frequency of hospital admissions (R-2 = 0.08), quality of life (R-2 = 0.23) and inter-episode depressive symptoms (R-2 = 0.13). Interpersonal difficulties, but not alcohol dependence, appeared to play an important role in mediating these adverse effects. While only 8% of the sample met criteria for active PTSD, this comorbid disorder was associated with BD severity.
Conclusions: This study indicates that awareness of trauma is important in understanding individual differences in bipolar presentations. The theoretical and clinical implications of evidence that trauma is related to more adverse outcomes in BD are discussed. The finding that interpersonal difficulties mediate the relationship between trauma and BD severity is novel. The need for adjunctive evidence-based treatments targeting interpersonal difficulties is considered.
Resumo:
The electrical conductivities of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids and of 1-hexyl-3-methylimidazolium ionic liquids with different anions were determined in the temperature range between 123 and 393 K on the basis of dielectric measurements in the frequency range from 1 to 10(7) Hz. Most of the ionic liquids form a glass and the conductivity values obey the Vogel-Fulcher-Tammann equation. The glass transition temperatures are increasing with increasing length of the alkyl chain. The fragility is weakly dependent on the alkyl chain length but is highly sensitive to the structure of the anion. (c) 2008 American Institute of Physics.
Resumo:
Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.
Resumo:
The sonochemical oxidation efficiency (eta(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, eta(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest eta(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on eta(ox). This is supported by the luminol images, the measured dependence of eta(ox). on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on eta(ox). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.
Resumo:
Two- and three-photon detachment rates have been obtained for F- using several expansions in the R-matrix Floquet approach. These rates are compared with other theoretical and experimental results. The use of Hartree-Fock wavefunctions for the ground state of F with addition of continuum electrons does not lead to agreement with experiment for two- and three-photon detachment. By adding correlation terms, agreement with experiment and other theoretical results is improved considerably, demonstrating the importance of electron correlation effects. However, convergence with respect to the wavefunction expansion cannot be established, we also study the intensity dependence of multiphoton detachment rates for F- at the Nd-YAG frequency. Due to the ponderomotive shift the three-photon detachment channel closes at an intensity of 8.5 x 10(11) W cm(-2) and the influence of this channel closure on the multiphoton detachment peaks is illustrated by determining the heights of the excess-photon peaks obtained using a Gaussian laser pulse.
Resumo:
The dielectric properties of pharmaceutical powder-(paracetamol, aspirin, lactose, maize starch, adipic acid) solvent (water) mixtures were measured at 2,450 MHz at a range of moisture contents (0-1.0 kg kg(-1), dry basis) and temperatures (20-70 A degrees C). The dielectric constant (epsilon'), loss factor (epsilon aEuro(3)) and penetration depth (d (p)) were found to be dependent on frequency, moisture content, temperature and powder type. For powder-water mixtures, a linear increase in the dielectric properties with moisture content was observed, whilst the temperature dependence was of quadratic form. The penetration depth was also significantly affected by temperature and moisture content. Although, epsilon aEuro(3) also increased with increasing temperature, variation with moisture content was temperature dependent. This information on dielectric properties is essential for mathematical description of the pharmaceutical product temperature history during microwave heating and for the design of microwave drying equipment.
Resumo:
We report on a temperature dependence of the frequency of all the major peaks in the Raman spectra of carbon nanotubes, using different excitation laser powers at the sample. The frequency decreases with increasing temperature for all peaks, and the shifts in Raman frequencies are linear in the temperature of the sample. In comparison, a similar dependence is found in active carbon, but no shift is observed for the highly ordered pyrolytic graphite within the same range of variation in laser power. A lowering of frequency at higher temperature implies an increase in the carbon-carbon distance at higher temperature. The relatively strong temperature dependence in carbon nanotubes and active carbon may be due to the enhanced increase in carbon-carbon distance. This enhancement may originate from the heavy defects and disorder in these materials. (C) 1998 American Institute of Physics. [S0021-8979(98)05219-0].
Resumo:
Email
Print
The accurate measurement of the permittivity, loss tangent and dielectric anisotropy DC bias dependence for two different liquid crystal (LC) materials in the frequency range 140-165 GHz is described. The electrical characteristics are obtained by curve fitting computed transmission coefficients to the experimental spectral response of a new class of electronically reconfigurable frequency selective surface. The periodic structure is designed to yield bandpass filter characteristics with and without an applied bias control voltage in order to measure the tunability of the LC material which is inserted in a 705 µm-thick cavity.
Resumo:
The behaviour of syntactic foam is strongly dependent on temperature and strain rate. This research focuses on the behaviour of syntactic foam made of epoxy and glass microballoons in the glassy, transition and rubbery regions. Both epoxy and epoxy foam are investigated separately under tension and shear loadings in order to study the strain rate and temperature effects. The results indicate that the strength and strain to failure data can be collapsed onto master curves depending on temperature reduced strain rate. The highest strain to failure occurs in the transition zone. The presence of glass microballoons reduces the strain to failure over the entire range considered, an effect that is particularly significant under tensile loading. However, as the microballoons increase the elastic modulus significantly in the rubbery zone but reduce it somewhat in the glassy zone, the effect on the strength is more complicated. Different failure mechanisms are identified over the temperature-frequency range considered. As the temperature reduced strain rate is decreased, the failure mechanism changes from microballoon fracture to matrix fracture and debonding between the matrix and microballoons. © IMechE 2012.
Resumo:
Two models that can predict the voltage-dependent scattering from liquid crystal (LC)-based reflectarray cells are presented. The validity of both numerical techniques is demonstrated using measured results in the frequency range 94-110 GHz. The most rigorous approach models, for each voltage, the inhomogeneous and anisotropic permittivity of the LC as a stratified media in the direction of the biasing field. This accounts for the different tilt angles of the LC molecules inside the cell calculated from the solution of the elastic problem. The other model is based on an effective homogeneous permittivity tensor that corresponds to the average tilt angle along the longitudinal direction for each biasing voltage. In this model, convergence problems associated with the longitudinal inhomogeneity are avoided, and the computation efficiency is improved. Both models provide a correspondence between the reflection coefficient (losses and phase-shift) of the LC-based reflectarray cell and the value of biasing voltage, which can be used to design beam scanning reflectarrays. The accuracy and the efficiency of both models are also analyzed and discussed.