807 resultados para Free-living protozoa. Hydric transmission diseases. Science education. Misconceptions
Resumo:
Heretofore the issue of quality in forensic science is approached through a quality management policy whose tenets are ruled by market forces. Despite some obvious advantages of standardization of methods allowing interlaboratory comparisons and implementation of databases, this approach suffers from a serious lack of consideration for forensic science as a science. A critical study of its principles and foundations, which constitutes its culture, enables to consider the matter of scientific quality through a new dimension. A better understanding of what pertains to forensic science ensures a better application and improves elementary actions within the investigative and intelligence processes as well as the judicial process. This leads to focus the attention on the core of the subject matter: the physical remnants of the criminal activity, namely, the traces that produce information in understanding this activity. Adapting practices to the detection and recognition of relevant traces relies on the apprehension of the processes underlying forensic science tenets (Locard, Kirk, relevancy issue) and a structured management of circumstantial information (directindirect information). This is influenced by forensic science education and training. However, the lack of homogeneity with regard to the scientific nature and culture of the discipline within forensic science practitioners and partners represents a real challenge. A sound and critical reconsideration of the forensic science practitioner's roles (investigator, evaluator, intelligence provider) and objectives (prevention, strategies, evidence provider) within the criminal justice system is a means to strengthen the understanding and the application of forensic science. Indeed, the whole philosophy is aimed at ensuring a high degree of excellence, namely, a dedicated scientific quality.
Resumo:
Free-living amoebae are distributed worldwide and are frequently in contact with humans and animals. As cysts, they can survive in very harsh conditions and resist biocides and most disinfection procedures. Several microorganisms, called amoeba-resisting microorganisms (ARMs), have evolved to survive and multiply within these protozoa. Among them are many important pathogens, such as Legionella and Mycobacteria, and also several newly discovered Chlamydia-related bacteria, such as Parachlamydia acanthamoebae, Estrella lausannensis, Simkania negevensis or Waddlia chondrophila whose pathogenic role towards human or animal is strongly suspected. Amoebae represent an evolutionary crib for their resistant microorganisms since they can exchange genetic material with other ARMs and develop virulence traits that will be further used to infect other professional phagocytes. Moreover, amoebae constitute an ideal tool to isolate strict intracellular microorganisms from complex microbiota, since they will feed on other fast-growing bacteria, such as coliforms potentially present in the investigated samples. The paradigm that ARMs are likely resistant to macrophages, another phagocytic cell, and that they are likely virulent towards humans and animals is only partially true. Indeed, we provide examples of the Chlamydiales order that challenge this assumption and suggest that the ability to multiply in protozoa does not strictly correlate with pathogenicity and that we should rather use the ability to replicate in multiple and diverse eukaryotic cells as an indirect marker of virulence towards mammals. Thus, cell-culture-based microbial culturomics should be used in the future to try to discover new pathogenic bacterial species.
Resumo:
The thoughts of the philosopher Paul Karl Feyerabend brought important contributions to the debate on Science in the 20th century. Most recently his views about non-existence of a single method for doing science have been employed to rethink science education and propose the use of multiple methods for effective teaching-learning process. This article employs the theoretical framework of the author expressed in the book Against Method, 1977, about the epistemological anarchism and the methodological pluralism and uses it in the contemporary discussion of medical education.
Resumo:
The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.
Resumo:
Infections by free-living amoebae can cause systemic disease in animals and humans. We describe the epidemiological, clinical and pathological aspects of disseminated acanthamoebiasis associated with canine distemper in three dogs of the semiarid region of Paraíba, Northeastern Brazil. Affected dogs developed progressive neurological and respiratory signs that progressed to death within in two to 20 days. Gross lesions were irregular and with yellow-reddish nodules randomly distributed in the lungs, heart, kidneys, spleen, lymph nodes, adrenals, and intestine. One dog had foci of malacia in the parietal cortex and another one in nucleus of brain basis. Histologically, pyogranulomas with areas of necrosis and hemorrhage in all organs affected were observed, associated with myriads of intralesional amoebic trophozoites. All three cases were concomitant canine distemper, that possibly triggered immunosuppression in the dogs. The diagnosis was performed through microscopic findings of infection by free-living amoebae and confirmed Acanthamoeba sp. by immunohistochemistry
Resumo:
Apoptosis is the most common phenotype observed when cells die through programmed cell death. The morphologic and biochemical changes that characterize apoptotic cells depend on the activation of a diverse set of genes. Apoptosis is essential for multicellular organisms since their development and homeostasis are dependent on extensive cell renewal. In fact, there is strong evidence for the correlation between the emergence of multicellular organisms and apoptosis during evolution. On the other hand, no obvious advantages can be envisaged for unicellular organisms to carry the complex machinery required for programmed cell death. However, accumulating evidence shows that free-living and parasitic protozoa as well as yeasts display apoptotic markers. This phenomenon has been related to altruistic behavior, when a subpopulation of protozoa or yeasts dies by apoptosis, with clear benefits for the entire population. Recently, phosphatidylserine (PS) exposure and its recognition by a specific receptor (PSR) were implicated in the infectivity of amastigote forms of Leishmania, an obligatory vertebrate intramacrophagic parasite, showing for the first time that unicellular organisms use apoptotic features for the establishment and/or maintenance of infection. Here we focus on PS exposure in the outer leaflet of the plasma membrane - an early hallmark of apoptosis - and how it modulates the inflammatory activity of phagocytic cells. We also discuss the possible mechanisms by which PS exposure can define Leishmania survival inside host cells and the evolutionary implications of apoptosis at the unicellular level.
Resumo:
In the last decade, dialogue between science and society has found a forum in an increasing number of publications on topics such as public engagement with science and public trust in science. Concerning the latter, issues that include cases of research misconduct, accountability in research, and conflicts of interest (COIs) have shaped global discussions on the communication of science. In the publication setting, the perception that hiding COIs and/or not managing them well may affect public trust in the research record has grown among editors. We conducted a search for editorials addressing COIs between 1989 and 2011, using four major databases: Medline/PubMed, Embase, Scopus, and Web of Knowledge. We explored the content of these editorials and the relationship they established between COIs and the public trust in science. Our results demonstrate that the relationship between disclosure of COIs and public trust in science has become a major concern among editors. We, thus, argue that COIs should be discussed more openly and frequently in graduate courses in the sciences, around the globe, not only in biomedical but also in non-biomedical areas. This is a critical issue in contemporary science, as graduate students are the future voices and decision-makers of the research community. Therefore, COIs, especially in the broader context of science and society, merit closer attention from policymakers, researchers, and educators. At times of great expectations for public engagement with science, mishandling of COIs may have undesirable consequences for public engagement with science and confidence in the scientific endeavor.
Resumo:
A sample of 1,345 students enrolled in advanced-level science courses from Grades 9 through OAe was surveyed in order to gain perspective into the existence of motivational differences attributing to science course enrolment by gender. Records of enrolment were examined in order to detect patterns and trends. A questionnaire was devised and piloted. It measured five motivational variables - demographics, science and science-related experiences, science ability and attitudes, impressions about women in science, and importance of science and science-related skills. The students also provided some impressions about the image of scientists. Results of the questionnaire were analyzed for frequency of responses and for significant gender differences using the chi-square. Differences were found to exist in the areas of science anxiety as it relates to testing and oral participation; in motivation generated by the performance of extra-curricular science and science-related activities, and by the classroom environment; in impressions of women in science; in the importance of science skills, and in the area of teacher influence. The study also showed a differential enrolment of females, with an emphasis on biology and chemistry. The males were enrolled in courses of physics and chemistry. The findings lead to numerous suggested strategies and programs for encouraging the participation of females in science education and careers.
Resumo:
This mixed-methods research study sought to determine the impact of an informal science camp—the Youth Science Inquiry Development Camp (YSIDC)—on participants’ science inquiry skills, through self-assessment, as well as their views and attitudes towards science and scientific inquiry. Pre and post data were collected using quantitative surveys (SPSI, CARS), a qualitative survey (VOSI-E), interviews, and researcher’s observations. Paired sample t-tests from the quantitative surveys revealed that the YSIDC positively impacted participants’ science inquiry skills and attitudes towards science. Interviews supported these findings and provided contextual reasons for these impacts. Implications from this research would suggest that informal and formal educational institutions can increase science inquiry skills and promote positive views and attitudes towards science and scientific inquiry by using non-competitive cooperative learning strategies with a mixture of guided and open inquiry. Suggested directions for further research include measuring science inquiry skills directly and conducting longitudinal studies to determine the lasting effects of informal and formal science programs.
Resumo:
Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology
Resumo:
The present work comprises studies on the salinity tolerance and respiratory metabolism of a mood-boring sphaeromid, Sphaeroma annandalei, Stabbing and two free living,foulers of the family Cirolanidae, Cirolana fluviatilis Stabbing and C. uilleyi Stabbing. Except for the systematic accounts and general observations by Pillai (1961) and the preliminary studies on the salinity tolerance and respiration of C. fluviatilis by Nagabhushanam and Gopalakrishnamurthy (1965, 1965a) very little is known about these isopods From Indian waters. Studies by John (1968) on the habits, structure, and development of Sphaeroma terebrans and by Cheriyan (1973) on the eoéphysiology of the same are the recent major contributions on this interesting group of animals. 5. annandalei is closely related to S. terebrans and has been reported to occur on timber along with the latter (Pillai, 1951). s. gggandalei is a serious pest attacking wood along the Kerala coast, but detailed works on this species have not been undertaken so Far
Resumo:
In natural systems phytoplankton interact with planktonic (free living) and attached epiphytic bacteria both synergistically and antagonistically. The specificity of the association with micro algae and bacteria differs in terms of adhesion mechanisms and metabolic cooperation. Present research was carried out to study the effect of bacterial isolates namely Bacillus sp. and Pseudomonas sp. from algal culture systems on the growth of micro algae such as Chaetoceros calcitrans and Nannochloropsis oculata. C. calcitrans (F= 15.34; P<0.05) and N. oculata (F=12.52; P<0.05) showed significantly higher growth, in treatments with Bacillus sp. and Pseudomonas sp when compared to control.
Resumo:
Gerade männliche Jugendliche nutzen in ihrer Pubertät und Adoleszenz zu einer gelingenden Gestaltung ihres Alltags und zur Ausbildung ihrer Identität zahlreiche Erscheinungsformen des Fantasy-Rollenspielens. In einem Prozess von Aneignung und Entäußerung integrieren dabei die Jugendlichen das überaus reiche multimediale Angebot, welches die Spiele bieten, in ihre Alltagsgestaltung, indem sie sich daraus spezifische Medien-, Text- und Ereignisarrangements bauen. Diese dienen einerseits der sozialen Integration und Distinktion, andererseits der Präsentation ihrer Identitätsentwürfe sich und anderen. Die Jugendlichen schaffen sich mittels dieser spezifischen Medien-, Text- und Ereignisarrangements eine in weiten Teilen von ihnen selbst bestimmte Welt, in der sie ihre Phantasie wie Kreativität mit großer Intensität, ja Obsession, innerhalb integrativer und solidarischer Interaktionsformen selbststeuernd und professionell ausleben. Diese Medien-, Text- und Ereignisarrangements zeigen Angebots- und Nutzungsformen, die sich nach einem medienkommunikativen Aneignungs- und Entäußerungsmodell in der Tradition der Cultural Studies (Stuart Hall) beschreiben lassen. Die Langzeitbeobachtung der Jugendlichen zeigt, dass sie alltagspragmatische Kulturtechniken zur selbstbestimmten Gestaltung von Alltag entwickeln: zunächst eine Strukturierung ihrer kognitiven, affektiven und pragmatischen Interaktion nach Kriterien erfolgreicher intrinsischer Interaktion, mit dem Ziel derer Perpetuierung im Flow-Erleben (Mihalyi Csikszentmihalyi), dann eine Ästhetisierung von Alltagswirklichkeit mittels kollektiver Fiktionalisierung in der Tradition des Collective Story Telling (Janet H. Murray). Diese Kulturtechniken stellen vor dem Hintergrund der Enkodierung und Dekodierung sozialer Codes spezifische Adaptionen von Prozessen der Bedeutungszuweisung und Subjekt- bzw. Identitätskonstitution dar. Die sie evozierenden und mit ihnen korrespondierenden handlungsleitenden Themen der Jugendlichen sind der Wunsch nach Rekonstitution von Gesamtheit in einer sich fragmentarisierenden Wirklichkeit, die Affirmation von Selbstbestimmung- und Autonomieerfahrungen, das Erleben von Reintegration und Solidarität für das sich dissoziiert erfahrende Individuum. Das Handeln der Jugendlichen basiert damit auf dem momentan dominanten Prozess einer Individualisierung von Lebenswelt unter den Bedingungen von Reflexivität und Erlebnisrationalität in der postmodernen Gesellschaft. Mit ihren Versuchen selbstbestimmter Gestaltung folgen sie dem aktuellen gesellschaftlichen Auftrag einer weitgehend in eigener Regie vorzunehmenden Lokalisierung dieses Prozesses. Zunehmend tritt diese von den Jugendlichen selbstgesteuerte Sozialisation neben die traditionell heteronome Sozialisation von gesellschaftlichen Instituten wie etwa die von Schule. Damit wird das Handeln der Jugendlichen zu einer Herausforderung an Pädagogik und Schule. Schule muss, wenn sie ihrem eigentlichen Auftrag von Förderung gerecht werden will, eine Sensibilität für diese Eigenständigkeit von Jugendlichen entwickeln und in der Beobachtung ihres Handelns didaktische Innovationen für Lehren und Lernen entwickeln. Im Mittelpunkt steht dabei die Wiederentdeckung des pädagogischen Dialogs, besonders aber die Entwicklung einer individualisierten Lernkultur und die Förderung jugendlicher Gestaltungskompetenzen, welche von deren alltagsästhetischen Erfahrungen und Kompetenzen im Umgang mit multimedialen Kulturprodukten ausgeht. Schule kann und muss für diese Prozesse selbstgesteuerten Lernens angemessene pädagogische Räume bereitstellen, in denen die Jugendlichen innerhalb eines geschützten Kontextes in der Auseinandersetzung mit eigenen wie fremden Entwürfen ihre Identität entwickeln können.
Resumo:
Despite its young history, Computer Science Education has seen a number of "revolutions". Being a veteran in the field, the author reflects on the many changes he has seen in computing and its teaching. The intent of this personal collection is to point out that most revolutions came unforeseen and that many of the new learning initiatives, despite high financial input, ultimately failed. The author then considers the current revolution (MOOC, inverted lectures, peer instruction, game design) and, based on the lessons learned earlier, argues why video recording is so successful. Given the fact that this is the decade we lost print (papers, printed books, book shops, libraries), the author then conjectures that the impact of the Internet will make this revolution different from previous ones in that most of the changes are irreversible. As a consequence he warns against storming ahead blindly and suggests to conserve - while it is still possible - valuable components of what might soon be called the antebellum age of education.
Resumo:
La ciencia en la escuela primaria resulta cada vez más solicitada, por ello los maestros deben aprender a elegir entre una gama de equipos cada vez más sofisticados. El objetivo es ayudar a los docentes en su tarea de garantizar que los niños accedan a un equipamiento científico adecuado,y que las escuelas desarrollen una política progresista en el suministro, uso y cuidado de estos aparatos.