941 resultados para FUNCTIONAL STATUS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to identify the relationship between social support and the functional capacity of elderly persons with cognitive alterations. It is a descriptive, cross-sectional and quantitative study. The subjects were 101 elderly persons registered in Family Health Centers whose performance in the Mini-Exam for Mental Status was below a certain specified level in a previous study. The Medical Outcomes Study questionnaire, Katz Index and Pfeffer Questionnaire were applied. The dimensions of material, affective, emotional, informational and positive social interaction support resulted in an average final score of 74.32 points, indicating a better level of material and affective support in relation to the other dimensions of support. There was a statistically significant correlation between emotional support and the Katz Index. Knowledge about this relationship favors the development of a nursing care pathway for the elderly which is capable of maintaining their functional capacity and ensuring satisfactory social relations.
Resumo:
Background: Exercise training is a non-pharmacological strategy for treatment of heart failure. Exercise training improves functional capacity and quality of life in patients. Moreover, exercise training reduces muscle sympathetic nerve activity (MSNA) and peripheral vasoconstriction. However, most of these studies have been conducted in middle-aged patients. Thus, the effects of exercise training in older patients are much less understood. The present study was undertaken to investigate whether exercise training improves functional capacity, muscular sympathetic activation and muscular blood flow in older heart failure patients, as it does in middle-aged heart failure patients. Design: Fifty-two consecutive outpatients with heart failure from the database of the Unit of Cardiovascular Rehabilitation and Physiology Exercise were divided by age (middle-aged, defined as 45-59 years, and older, defined as 60-75 years) and exercise status (trained and untrained). Methods: MSNA was recorded directly from the peroneal nerve using the microneurography technique. Forearm Blood Flow (FBF) was measured by venous occlusion plethysmography. Functional capacity was evaluated by cardiopulmonary exercise test. Results: Exercise training significantly and similarly increased FBF and peak VO2 in middle-aged and older heart failure patients. In addition, exercise training significantly and similarly reduced MSNA and forearm vascular resistance in these patients. No significant changes were found in untrained patients. Conclusion: Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age.
Resumo:
We evaluated the functional dependence of stroke survivors from the Study of Stroke Mortality and Morbidity, using the Rankin Scale. Out of 355 ischemic stroke survivors (with a mean age of 67.9 years), 40% had some functional dependence at 28 days and 34.4% had some functional dependence at 6 months. Most predictors of physical dependence were identified at 28 days. These predictors were: low levels of education [illiterate vs. >= 8 years of education, multivariate odds ratio (OR) = 3.7; 95% confidence interval (95%CI): 1.60-8.54] and anatomical stroke location (total anterior circulation infarct, OR = 16.9; 95%CI: 2.93-97.49). Low levels of education and ischemic brain injury influenced functional dependence in these stroke survivors. Our findings reinforce the necessity of developing strategies for the rehabilitation of stroke patients, more especially in formulating specific strategies for care and treatment of stroke survivors with low socioeconomic status.
Resumo:
The benefits of cochlear implants (CI) for communication skills are obtained over the years. There are but a few studies regarding the long-term outcomes in postlingual deaf children who grew up using the electronic device. Aim: To assess the functional results in a group of postlingual children, 10 years after using a CI. Methods: Ten postlingual deaf children, implanted before 18 years of age, participated in this study. We assessed: sentence recognition and speech intelligibility. We documented: device use and function and the patient's academic/occupational status. Study design: series. Results: The mean scores were 73% for sentence recognition in silence and 40% in noise. The average write-down intelligibility score was 92% and the average rating-scale intelligibility score was 4.15. There were no cases of device failure. Regarding educational/vocational status, three subjects graduated from the University. Five quit education after completing high school. Eight subjects had a professional activity. Conclusion: This study showed that cochlear implantation is a safe and reliable procedure. The postlingual profoundly hearing-impaired children after 10 years of CI use developed satisfactory levels regarding speech perception and intelligibility, and completed at least high school and were inserted in the labor market. Clinical Trials Registry: NCT01400178.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
Abstract Background Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. Results Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA: GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA:GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. Conclusions Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.
Resumo:
OBJECTIVE: To characterize the elderly with physical limitations; to assess functional capacity as it relates to physical mobility, cognitive status and level of functional independence in activities of daily living, and to relate functional capacity to the risk for pressure ulcers. METHODS: A quantitative cross-sectional approach, conducted in households in the city of João Pessoa (PB) with seniors who presented physical limitation. Fifty-one elderly were investigated in a two-stage cluster sampling design. RESULTS: There was evidence of impairments in functional capacity of the elderly aged 80 years or more, with more severe physical limitations, cognitive impairment and a higher level of dependency for activities. Significant differences were observed between the level of functional independence in performing activities of daily living and the risk of pressure ulcers. CONCLUSION: This study allowed for the identification of the elderly in functional decline and at risk for developing pressure ulcers, supporting the implementation of preventive actions at the household level.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
Das Hepatitis C Virus (HCV) ist ein umhülltes RNA Virus aus der Familie der Flaviviridae. Sein Genom kodiert für ein ca. 3000 Aminosäuren langes Polyprotein, welches co- und posttranslational in seine funktionellen Einheiten gespalten wird. Eines dieser viralen Proteine ist NS5A. Es handelt sich hierbei um ein stark phosphoryliertes Protein, das eine amphipatische α-Helix im Amino-Terminus trägt, welche für die Membran-Assoziation von NS5A verantwortlich ist. Welche Rolle die Phosphorylierung für die Funktion des Proteins spielt, bzw. welche Funktion NS5A überhaupt ausübt, ist zur Zeit noch unklar. Beobachtungen lassen Vermutungen über eine Funktion von NS5A bei der Resistenz infizierter Zellen gegenüber Interferon-alpha zu. Weiterhin wird vermutet, das NS5A als Komponente des membranständigen HCV Replikasekomplexes an der RNA Replikation beteiligt ist. Das Ziel dieser Doktorarbeit war es, die Funktion von NS5A für die RNA Replikation zu untersuchen. Zu diesem Zweck wurde eine Serie von Phosphorylierungsstellen-Mutanten generiert, die auf Ihre Replikationsfähigkeit und den Phosphorylierungsstatus hin untersucht wurden. Wir fanden, dass bestimmte Serin-Substitutionen im Zentrum von NS5A zu einer gesteigerten RNA Replikation führten, bei gleichzeitig reduzierter NS5A Hyperphosphorylierung. Weiterhin studierten wir den Einfluß von Mutationen in der Amino-terminalen amphipatischen α-Helix von NS5A auf die RNA-Replikation, sowie Phosphorylierung und subzelluläre Lokalisation des Proteins. Wir fanden, dass geringfügige strukturelle Veränderungen der amphipatischen Helix zu einer veränderten subzellulären Lokalisation von NS5A führten, was mit einer reduzierten oder komplett inhibierten RNA Replikation einherging. Zudem interferierten die strukturellen Veränderungen mit der Hyperphosphorylierung des Proteins, was den Schluß nahe legt, dass die amphipatische Helix eine wichtige strukturelle Komponente des Proteins darstellt, die für die korrekte Faltung und Phosphorylierung des Proteins essentiell ist. Als weitere Aspekte wurden die Trans-Komplementationsfähigkeit der verschiedenen viralen Komponenten des HCV Replikasekomplexes untersucht, sowie zelluläre Interaktionspartner von NS5A identifiziert. Zusammenfassend zeigen die Ergebnisse dieser Doktorarbeit, dass NS5A eine wichtige Rolle bei der RNA-Replikation spielt. Diese Funktion wird wahrscheinlich über den Phosphorylierungszustand des Proteins reguliert.
Resumo:
Aim: To assess if the intake of levodopa in patients with Parkinson’s Disease (PD) changes cerebral connectivity, as revealed by simultaneous recording of hemodynamic (functional MRI, or fMRI) and electric (electroencephalogram, EEG) signals. Particularly, we hypothesize that the strongest changes in FC will involve the motor network, which is the most impaired in PD. Methods: Eight patients with diagnosis of PD “probable”, therapy with levodopa exclusively, normal cognitive and affective status, were included. Exclusion criteria were: moderate-severe rest tremor, levodopa induced dyskinesia, evidence of gray or white matter abnormalities on structural MRI. Scalp EEG (64 channels) were acquired inside the scanner (1.5 Tesla) before and after the intake of levodopa. fMRI functional connectivity was computed from four regions of interest: right and left supplementary motor area (SMA) and right and left precentral gyrus (primary motor cortex). Weighted partial directed coherence (w-PDC) was computed in the inverse space after the removal of EEG gradient and cardioballistic artifacts. Results and discussion: fMRI group analysis shows that the intake of levodopa increases hemodynamic functional connectivity among the SMAs / primary motor cortex and: sensory-motor network itself, attention network and default mode network. w-PDC analysis shows that EEG connectivity among regions of the motor network has the tendency to decrease after the intake the levodopa; furthermore, regions belonging to the DMN have the tendency to increase their outflow toward the rest of the brain. These findings, even if in a small sample of patients, suggest that other resting state physiological functional networks, beyond the motor one, are affected in patients with PD. The behavioral and cognitive tasks corresponding to the affected networks could benefit from the intake of levodopa.
Resumo:
The aim of this study involving 170 patients suffering from non-specific low back pain was to test the validity of the spinal function sort (SFS) in a European rehabilitation setting. The SFS, a picture-based questionnaire, assesses perceived functional ability of work tasks involving the spine. All measurements were taken by a blinded research assistant; work status was assessed with questionnaires. Our study demonstrated a high internal consistency shown by a Cronbach's alpha of 0.98, reasonable evidence for unidimensionality, spearman correlations of >0.6 with work activities, and discriminating power for work status at 3 and 12 months by ROC curve analysis (area under curve = 0.760 (95% CI 0.689-0.822), respectively, 0.801 (95% CI 0.731-0.859). The standardised response mean within the two treatment groups was 0.18 and -0.31. As a result, we conclude that the perceived functional ability for work tasks can be validly assessed with the SFS in a European rehabilitation setting in patients with non-specific low back pain, and is predictive for future work status.
Resumo:
Electromagnetic fields arising from magnetic resonance imaging (MRI) can cause various clinically relevant functional disturbances in patients with cardiac pacemakers. Consequently, an implanted pacemaker is generally considered a contraindication for an MRI scan. With approximately 60 million MRI scans performed worldwide per year, MRI may be indicated for an estimated majority of pacemaker patients during the lifetime of their pacemakers. The availability of MR conditional pacemakers with CE labelling is of particular advantage since they allow the safe use of pacemakers in MRI. In this article the current state of knowledge on pacemakers and MR imaging is discussed. We present the results of a survey conducted among Swiss radiologists to assess current practice in patients with pacemakers.
Resumo:
Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.
Resumo:
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.