954 resultados para Extensible Dependency Grammar
Resumo:
Berkely, Univ. of California, Diss. 1905
Resumo:
The study focused on the relationship between antisocial personality syndrome in boys ages 8-15 and parental alcohol/drug dependency. The population studied was case records of 101 boys coming to a private psychiatrist from 1966 through 1979. The boys were predominantly white and from middle to upper income families.^ A boy was determined to have antisocial personality syndrome if he exhibited antisocial behaviors in four or five major categories, did not exhibit a brain syndrome, and did not exhibit a thought disorder. The five major behavior categories were: (1) self-control (i.e., temper tantrums or hyperactivity), (2) behavior at home (i.e., disobedience or lying), (3) behavior at school (i.e., truancy or cheating), (4) behavior toward peers (i.e., bullying, fighting, or tattling), and (5) behavior against property (i.e., destructiveness or stealing). A boy was determined to be a control if he exhibited antisocial behaviors in two or less behavior categories.^ A parent was determined to have alcohol/drug dependency if s/he exhibited a score above the established threshold (1) for the MacAndrew Alcoholism Scale (28 or above), and (2) for the Holmes Alcoholism Scale (35 or above) which are used with the MMPI. A parent was classified not alcohol/drug dependent if s/he had scores below set thresholds (22 on the MacAndrew Alcoholism Scale and 28 on the Holmes Alcoholism Scale).^ For the final sample (N = 10), there was no reason to believe a relationship exists between antisocial personality syndrome in boys ages 8-15 and parental alcohol/drug dependency (Fisher's Exact Test {FET} P = 1.0). The small sample size primarily occurred as a result of 88.12% of the parents being classified in a questionable category in terms of alcohol/drug dependency.^ The sample was suggestive of a relationship between the fathers' Psychopathic Deviate (Pd) Scale scores as a measure of antisocial tendencies and the boy having antisocial personality syndrome (N = 75; P = .12). There was no evidence of such a relationship for mothers (N = 75; P = .97). ^
A repository for integration of software artifacts with dependency resolution and federation support
Resumo:
While developing new IT products, reusability of existing components is a key aspect that can considerably improve the success rate. This fact has become even more important with the rise of the open source paradigm. However, integrating different products and technologies is not always an easy task. Different communities employ different standards and tools, and most times is not clear which dependencies a particular piece of software has. This is exacerbated by the transitive nature of these dependencies, making component integration a complicated affair. To help reducing this complexity we propose a model-based repository, capable of automatically resolve the required dependencies. This repository needs to be expandable, so new constraints can be analyzed, and also have federation support, for the integration with other sources of artifacts. The solution we propose achieves these working with OSGi components and using OSGi itself.
Resumo:
Review of this book, that is the author's Thesis Dissertation.
Resumo:
This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Traditional schemes for abstract interpretation-based global analysis of logic programs generally focus on obtaining procedure argument mode and type information. Variable sharing information is often given only the attention needed to preserve the correctness of the analysis. However, such sharing information can be very useful. In particular, it can be used for predicting runtime goal independence, which can eliminate costly run-time checks in and-parallel execution. In this paper, a new algorithm for doing abstract interpretation in logic programs is described which concentrates on inferring the dependencies of the terms bound to program variables with increased precisión and at all points in the execution of the program, rather than just at a procedure level. Algorithms are presented for computing abstract entry and success substitutions which extensively keep track of variable aliasing and term dependence information. In addition, a new, abstract domain independent ñxpoint algorithm is presented and described in detail. The algorithms are illustrated with examples. Finally, results from an implementation of the abstract interpreter are presented.
Resumo:
We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis.
Resumo:
We present a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be verified statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by means of user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis. In practice, this modularity allows detecting statically bugs in user programs even if they do not contain any assertions.
Resumo:
In this paper, we introduce a dynamical complexity measure, namely the degree of team cooperation, in the aim of investigating "how much" the components of a grammar system cooperate when forming a team in the process of generating terminal words. We present several results which strongly suggest that this measure is trivial in the sense that the degree of team cooperation of any language is bounded by a constant. Finally, we prove that the degree of team cooperation of a given cooperating/distributed grammar system cannot be algorithmically computed and discuss a decision problem.
Resumo:
We demonstrate generating complete and playable card games using evolutionary algorithms. Card games are represented in a previously devised card game description language, a context-free grammar. The syntax of this language allows us to use grammar-guided genetic programming. Candidate card games are evaluated through a cascading evaluation function, a multi-step process where games with undesired properties are progressively weeded out. Three representa- tive examples of generated games are analysed. We observed that these games are reasonably balanced and have skill ele- ments, they are not yet entertaining for human players. The particular shortcomings of the examples are discussed in re- gard to the generative process to be able to generate quality games
Resumo:
Spatial planning & energy. Young planners workshop. Final reports - conclusions
Resumo:
In this paper we define the notion of an axiom dependency hypergraph, which explicitly represents how axioms are included into a module by the algorithm for computing locality-based modules. A locality-based module of an ontology corresponds to a set of connected nodes in the hypergraph, and atoms of an ontology to strongly connected components. Collapsing the strongly connected components into single nodes yields a condensed hypergraph that comprises a representation of the atomic decomposition of the ontology. To speed up the condensation of the hypergraph, we first reduce its size by collapsing the strongly connected components of its graph fragment employing a linear time graph algorithm. This approach helps to significantly reduce the time needed for computing the atomic decomposition of an ontology. We provide an experimental evaluation for computing the atomic decomposition of large biomedical ontologies. We also demonstrate a significant improvement in the time needed to extract locality-based modules from an axiom dependency hypergraph and its condensed version.
Resumo:
Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.