945 resultados para Epithelial-mesenchymal crosstalk
Resumo:
PURPOSE: To compare corneal reepithelialization, pain scores, ocular discomfort, and tear production after photorefractive keratectomy (PRK) and butterfly laser epithelial keratomileusis (LASEK). METHODS: This prospective, randomized, double-masked study comprised 102 eyes of 51 patients who underwent laser refractive surgery. Each patient was randomized to have one eye operated on with PRK and the other with butterfly LASEK. Patients were followed for 1 year. RESULTS: The mean reepithelialization time in the PRK group was 4.35 +/- 0.48 days (range: 4 to 5 days) and 4.75 +/- 0.72 days (range: 4 to 6 days) in the butterfly LASEK group (P<.002). Pain scores and ocular discomfort were not statistically different between groups, although a trend towards a lower pain level with PRK was noted (3.31 +/- 4.09 vs 4.43 +/- 4.27; P=.18). Schirmer test values were significantly reduced from preoperative levels through 12 months with both PRK (23.6 +/- 8.1 vs 19.4 +/- 10.1; P<.002) and butterfly LASEK (22.4 +/- 8.7 vs 18.9 +/- 9.7; P=.01); however, no difference between groups was noted at any time. CONCLUSIONS: Photorefractive keratectomy showed a modest but statistically significant shorter reepithelialization time and a tendency towards lower pain scores than butterfly LASEK. The reepithelialization time was strongly associated with the duration of surgery in both techniques. A similar reduction of Schirmer test values was observed up to 1 year postoperatively in both groups.
Resumo:
The liver involvement in the human visceral leishmaniasis (VL) has been related to parasitism and activated Kupffer cells with further occasional fibrotic alterations, especially after long-term disease without treatment. However, fibrotic alterations have been reported after therapy, whose clinical finding is the persistence of hepatomegaly. Fibrotic involvement of the liver after therapy was never well understood, and the aim of this study was to evaluate this finding through ultrastructural and morphometric analysis. A case-control study was performed with 20 patients (15 cases and five controls). Cases included patients with persistent hepatomegaly (residual) after treatment of VL submitted to liver biopsy to exclude other causes of liver enlargement, including serum tests of viral hepatitis. The material was evaluated by electron microcopy allowing ultrastructural with morphometric analysis of medium portion of hepatic lobule. Narrow sinusoidal lumen and prominent Kupffer cells were found with insignificant alterations of hepatocytes, pit, and endothelial cells. On ultrastructural analysis, the enlargement of the space of Disse was due to fibrous collagen, increase of number of Ito cells, and nonfibrous extracellular matrix that were associated with Kupffer cells enlargement. Immunohistochemistry showed an intense expression of TGF-beta in patients with VL. These findings suggest a production of TGF-beta by Kupffer cells that resulted in the characteristic fibrotic involvement of the liver. Residual hepatomegaly in visceral leishmaniasis could result from sustained Kupffer cell activation with perihepatocytic fibrosis.
Resumo:
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 x 10(6)) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-beta, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to test the hypothesis that bone marrow mononuclear cell (BMDMC) therapy led an improvement in lung mechanics and histology in endotoxin-induced lung injury. Twenty-four C57BL/6 mice were randomly divided into four groups (n = 6 each). In the acute lung injur;y (ALI) group, Escherichia coli lipopolysaccharide (LPS) was instilled intratracheally (40 mu g, IT), and control (C) mice received saline (0.05 ml, IT). One hour after the administration of saline or LPS, BMDMC (2 x 10(7) cells) was intravenously injected. At day 28, animals were anesthetized and lung mechanics [static elastance (E(st)), resistive (Delta P(1)), and viscoelastic (Delta P(2)) pressures] and histology (light and electron microscopy) were analyzed. Immunogold electron microscopy was used to evaluate if multinucleate cells were type II epithelial cells. BMDMC therapy prevented endotoxin-induced lung inflammation, alveolar collapse, and interstitial edema. In addition, BMDMC administration led to epithelial and endothelial repair with multinucleated type II pneumocytes. These histological changes yielded a reduction in lung E(st), Delta P(1), and Delta P(2) compared to ALI. In the present experimental ALI model, the administration of BMDMC yielded a reduction in the inflammatory process and a repair of epithelium and endothelium, reducing the amount of alveolar collapse, thus leading to an improvement in lung mechanics.
Resumo:
We investigated the effects of salbutamol on the markers of epithelial function in a murine model of chronic allergic pulmonary inflammation by recording the ciliary beat frequency (CBF) and the transepithelial potential difference (PD) in vivo. Mice were sensitized and received four challenges of ovalbumin (OVA group) or 0.9% saline (control group). Forty-eight hours after the 4th inhalation, we observed eosinophilia in the bronchoalveolar lavage and epithelium remodeling with stored acid mucus in the OVA group (P < 0.001). No difference in the baseline CBF was noticed between the groups; however, the OVA group had a significantly lower baseline PD (P = 0.013). Salbutamol increased the CBF in all groups studied, and the dose response curve to salbutamol increased the PD in the OVA group from 10(-4) M to 10(-2) M. We suggest that salbutamol affects the CBF and the depth of the periciliary layer, which, in great part, determines the ability of the cilia to propel the mucus layer. This effect may have a positive impact on airway mucociliary transport in asthma and may have clinical implications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Mesenchymal stem cells (MSCs) have been considered for human regenerative therapy applications, and safe culture and expansion protocols are needed especially in the context of interspecies contamination. Human platelet lysate (PL) has been proposed as animal serum substitute during in vitro MSC expansion. In this work, a simplified and efficient method to obtain autologous PL to replace animal serum in cell culture applications is described. STUDY DESIGN AND METHODS: PL obtained by freezing and centrifugation procedures was tested as medium supplement for human adipose mesenchymal stem cell (hASC) culture. Differential proliferation, immunophenotypic changes, and differentiation under PL or fetal bovine serum (FBS) were assessed. RESULTS: In contrast to 10% FBS supplementation, cell population doubling time was significantly lower when hASCs were cultured with the same concentration of PL ( PL 22.9 +/- 1.5 hr vs. FBS 106.7 +/- 6.5 hr, t test, p < 0.05). Furthermore, hASCs maintained with 2.5% PL supplementation also showed satisfactory results. Immunophenotypic analysis revealed no differences between hASCs cultivated with PL or FBS supplementation and both cultures retained the potential to differentiate into adipose cells. These results demonstrate that autologous PL obtained from the same donor can be used as animal serum substitute in hASC culture. CONCLUSIONS: Taken together, evidence is provided that platelets provided by a single donor are sufficient to obtain PL for hASC propagation for clinical-scale applications mitigating the potential untoward side effects associated with the use of animal-derived reagents.
Resumo:
PURPOSE: To compare mechanical and ethanol epithelial removal with respect to myofibroblast development and haze formation after photorefractive keratectomy (PRK). METHODS: Seventeen rabbits underwent mechanical or ethanol debridement, and the opposite eye of each rabbit served as an unwounded control. In both groups, the epithelium was removed with a spatula and discarded. A -9.00-diopter PRK was performed in each eye. The level of haze in each cornea at 4 weeks was graded at the slit-lamp microscope according to the Fantes scale. Myofibroblast generation was detected with immunocytochemistry for alpha-smooth muscle actin (alpha-SMA) and cells were quantitatively analyzed. RESULTS: No difference was noted between the two groups in alpha-SMA + myofibroblasts 4 weeks after surgery (43.6 +/- 2.0/400X field and 45.7 +/- 4.8/400X field in ethanol and mechanical groups, respectively) (P=.10). A slight difference was noted but did not reach statistical significance with regard to stromal haze between ethanol and mechanical groups (2.0 +/- 0.5 and 2.3 +/- 0.4, respectively, P=.063). The ethanol and mechanical groups were statistically different when compared to controls regarding stromal haze and alpha-SMA+ cells (P <.0001 for all comparisons). CONCLUSIONS:No difference was noted in clinical haze or myofibroblast generation between corneas that had PRK with mechanical,or ethanol epithelial debridement. [J Refract Surg., 2008;24:923-927.]
Resumo:
Background: Cadherins and integrins are important for maintenance of tissue integrity and in signal transduction during skin development. Distribution of these molecules in human skin development was investigated and associated with markers of differentiation, cytokeratins (CK) and involucrin (INV). Methods: Using immunohistochemistry expression of E- and P-cadherins, integrins beta-1 and -4, CK10, CK14 and INV was assessed in skin fragments of 10 human fetuses (gestational weeks ranged from 4 to 24, all weighing up to 500 g). Results: At initial phases of development, integrins beta-1 and -4 and E- and P-cadherins were present on epithelial cell membranes in all layers. CK14 and CK10 were expressed in all epithelial layers and INV weakly detected in the superficial layer. In more advanced stages, integrins were detected in all layers, but a marked polarized expression was seen in basal layer. E-cadherin was detected in all layers, but the cornified stratum and P-cadherin were observed in the lower layers. CK14 was expressed in basal layer, CK10 in suprabasal stratum and INV was observed in cornified layer. Conclusions: Cadherins and integrins are essential for skin development, being spatially and temporally regulated. Their expression is related with the expression of maturation markers of the epidermis.
Resumo:
Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.
Resumo:
The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Mesenchymal stromal cells (MSCs) suppress T cell responses through mechanisms not completely understood. Adenosine is a strong immunosuppressant that acts mainly through its receptor A(2a) (ADORA2A). Extracellular adenosine levels are a net result of its production (mediated by CD39 and CD73), and of its conversion into inosine by Adenosine Deaminase (ADA). Here we investigated the involvement of ADO in the immunomodulation promoted by MSCs. Human T lymphocytes were activated and cultured with or without MSCs. Compared to lymphocytes cultured without MSCs, co-cultured lymphocytes were suppressed and expressed higher levels of ADORA2A and lower levels of ADA. In co-cultures, the percentage of MSCs expressing CD39, and of T lymphocytes expressing CD73, increased significantly and adenosine levels were higher. Incubation of MSCs with media conditioned by activated T lymphocytes induced the production of adenosine to levels similar to those observed in co-cultures, indicating that adenosine production was mainly derived from MSCs. Finally, blocking ADORA2A signaling raised lymphocyte proliferation significantly. Our results suggest that some of the immunomodulatory properties of MSCs may, in part, be mediated through the modulation of components related to adenosine signaling. These findings may open new avenues for the development of new treatments for GVHD and other inflammatory diseases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
Background/Aims: The expression of cancer/testis antigens (CTAs) on additional normal tissues or stem cells may restrict their use as cancer targets. The objective of the present study was to evaluate the mRNA levels of some CTAs in a variety of tissues. Materials and Methods: mRNA of pericytes, fibroblasts and mesenchymal stem cells (MSCs) derived from adult and fetal tissues, human umbilical vein endothelial cells, MSC-derived adipocytes, selected normal tissues and control cancer cell lines (CLs) were extracted and quantitative polymerase chain reaction was performed for MAGED1, PRAME, CTAG1B, MAGEA3 and MAGEA4. Results: MAGED1 was expressed in all normal tissues and cells evaluated. CTAG1B was expressed at levels comparable to control CLs on MSCs derived from arterial, fetal skin, adipose tissue and saphenous vein, heart, brain and skin tissues. MAGEA4 was detected only in fibroblasts and differentiated adipocytes from MSCs, at levels comparable to the control CLs. Conclusion: The potential use of CTAs in immunotherapy should take into account the potential off-target effects on MSCs.
Resumo:
Background: Cigarette smoke exposure is considered an important negative prognostic factor for chronic rhinosinusitis (CRS) patients. However, there is no clear mechanistic evidence implicating cigarette smoke exposure in the poor clinical evolution of the disease or in the maintenance of the inflammatory state characterizing CRS. This study aimed to evaluate the effects of cigarette smoke exposure on respiratory cilia differentiation. Methods: Monse nasal septal epithelium cultures grown at an air-liquid interface were used as a model of respiratory epithelium. After 5 days of cell growth, cultures were exposed to air on the apical surface. Additionally, cigarette smoke condensate (CSC; the particulate phase of tobacco smoke) or cigarette smoke extract (CSE; the volatile phase) Were diluted in the basolateral compartment in different concentrations. After 15 days of continuous exposure, scanning electron microscopy and immunofluorescence for type IV tubulin were used to determine presence and maturation of cilia. Transepithelial resistance was also recorded to evaluate confluence and physiological barrier integrity. Results: CSC and CSE impair ciliogenesis in a dose-dependent manner with notable effects in concentrations higher than 30 mu g/mL, yielding >70% nonciliation and shorter cilia compared With control. No statistical difference on transepithelial resistance was evident. Conclusion: CSC and CSE exposure negatively impacts ciliogenesis of respiratory cells at concentrations not effecting transepithelial resistance. The impairment on ciliogenesis reduce the mucociliary clearance apparatuts after injury and/or infection and may explain the poor response to therapy for CRS patients exposed to tobacco smoke.
Resumo:
Neutrophil influx is essential for corneal regeneration (Gan et al. 1999). KM+, a lectin from Artocarpus integrifolia, induces neutrophil migration (Santos-de-Oliveira et al. 1994). This study aims at investigating a possible effect of KM+ on corneal regeneration in rabbits. A 6,0-mm diameter area of debridement was created on the cornea of both eyes by mechanical scraping. The experimental eyes received drops of KM+ (2.5 mu g/ml) every 2 h, The control eyes received buffer, The epithelial wounded areas of the lectin-treated and untreated eyes were stained with fluorescein, photographed and measured, The animals were killed 12 h (group 1, n = 5), 24 h (group 2, n = 10) and 48 h (group 3, n = 5) after the scraping. The corneas were analysed histologically (haematoxylin and eosin and immunostaining for proliferation cell nuclear antigen, p&3, vascular endothelial growth factor, c-Met and laminin). No significant differences were found at the epithelial gap between treated and control eyes in the group 1. However, the number of neutrophils in the wounded area was significantly higher in treated eyes in this group. Three control and seven treated eyes were healed completely and only rare neutrophils persisted in the corneal stroma in group 2. No morphological distinction was observed between treated and control eyes in group 3. In treated corneas of group 2, there was an increase in immunostaining of factors involved in corneal healing compared to controls, Thus, topical application of KM+ may facilitate corneal epithelial wound healing in rabbits by means of a mechanism that involves increased influx of neutrophils into the wounded area induced by the lectin.