945 resultados para Entropic graphs
Resumo:
Postprint
Resumo:
DNA and other biopolymers differ from classical polymers because of their torsional stiffness. This property changes the statistical character of their conformations under tension from a classical random walk to a problem we call the “torsional directed walk.” Motivated by a recent experiment on single lambda-DNA molecules [Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A. & Croquette, V. (1996) Science 271, 1835–1837], we formulate the torsional directed walk problem and solve it analytically in the appropriate force regime. Our technique affords a direct physical determination of the microscopic twist stiffness C and twist-stretch coupling D relevant for DNA functionality. The theory quantitatively fits existing experimental data for relative extension as a function of overtwist over a wide range of applied force; fitting to the experimental data yields the numerical values C = 120 nm and D = 50 nm. Future experiments will refine these values. We also predict that the phenomenon of reduction of effective twist stiffness by bend fluctuations should be testable in future single-molecule experiments, and we give its analytic form.
Resumo:
In this paper, we propose a novel method for the unsupervised clustering of graphs in the context of the constellation approach to object recognition. Such method is an EM central clustering algorithm which builds prototypical graphs on the basis of fast matching with graph transformations. Our experiments, both with random graphs and in realistic situations (visual localization), show that our prototypes improve the set median graphs and also the prototypes derived from our previous incremental method. We also discuss how the method scales with a growing number of images.