997 resultados para Enseñanza b-learning
Resumo:
The Building Partnerships Program at the University of Queensland, Australia seeks to address the dual challenge of preparing doctors who are responsive to the community while providing a meaningful context for social sciences learning. Through partnerships with a diverse range of community agencies, the program offers students opportunities to gain non-clinical perspectives on health and illness through structured learning activities including: family visits; community agency visits and attachments; and interview training. Students learn first-hand about psychosocial influences on health and how people manage health problems on a day-to-day basis. They also gain insights into the work of community agencies and how they as future doctors might work in partnership with them to enhance patient care. We outline the main components of the program, identify challenges and successes from student and community agency perspectives, and consider areas that invite further development.
Resumo:
This theoretical note describes an expansion of the behavioral prediction equation, in line with the greater complexity encountered in models of structured learning theory (R. B. Cattell, 1996a). This presents learning theory with a vector substitute for the simpler scalar quantities by which traditional Pavlovian-Skinnerian models have hitherto been represented. Structured learning can be demonstrated by vector changes across a range of intrapersonal psychological variables (ability, personality, motivation, and state constructs). Its use with motivational dynamic trait measures (R. B. Cattell, 1985) should reveal new theoretical possibilities for scientifically monitoring change processes (dynamic calculus model; R. B. Cattell, 1996b), such as encountered within psycho therapeutic settings (R. B. Cattell, 1987). The enhanced behavioral prediction equation suggests that static conceptualizations of personality structure such as the Big Five model are less than optimal.
Resumo:
In this paper I explore the Indigenous Australian women's performance classroom (hereafter ANTH2120) as a dialectic and discursive space where the location of possibility is opened for female Indigenous performers to enter into a dialogue from and between both non-Indigenous and Indigenous voices. The work of Bakhtin on dialogue serves as a useful standpoint for understanding the multiple speaking positions and texts in the ANTH2120 context. Bakhtin emphasizes performance, history, actuality and the openness of dialogue to provide an important framework for analysing multiple speaking positions and ways of making meaning through dialogue between shifting and differing subjectivities. I begin by briefly critiquing Bakhtin's "dialogic imagination" and consider the application and usefulness of concepts such as dialogism, heteroglossia and the utterance to understanding the ANTH2120 classroom as a polyphonic and discursive space. I then turn to an analysis of dialogue in the ANTH2120 classroom and primarily situate my gaze on an examination of the interactions that took place between the voices of myself as family/teacher/student and senior Yanyuwa women from the r e m o t e N o r t h e r n T e r r i t o r y A b o r i g i n a l c o m m u n i t y o f B o r r o l o o l a as family/performers/teachers. The 2000 and 2001 Yanyuwa women's performance workshops will be used as examples of the way power is constantly shifting in this dialogue to allow particular voices to speak with authority, and for others to remain silent as roles and relationships between myself and the Yanyuwa women change. Conclusions will be drawn regarding how my subject positions and white race privilege affect who speaks, who listens and on whose terms, and further, the efficacy of this pedagogical platform for opening up the location of possibility for Indigenous Australian women to play a powerful part in the construction of knowledges about women's performance traditions.
Resumo:
Input-driven models provide an explicit and readily testable account of language learning. Although we share Ellis's view that the statistical structure of the linguistic environment is a crucial and, until recently, relatively neglected variable in language learning, we also recognize that the approach makes three assumptions about cognition and language learning that are not universally shared. The three assumptions concern (a) the language learner as an intuitive statistician, (b) the constraints on what constitute relevant surface cues, and (c) the redescription problem faced by any system that seeks to derive abstract grammatical relations from the frequency of co-occurring surface forms and functions. These are significant assumptions that must be established if input-driven models are to gain wider acceptance. We comment on these issues and briefly describe a distributed, instance-based approach that retains the key features of the input-driven account advocated by Ellis but that also addresses shortcomings of the current approaches.
Resumo:
Supporting student learning can be difficult, especially within open-ended or loosely structured activities, often seen as valuable for promoting student autonomy in many curriculum areas and contexts. This paper reports an investigation into the experiences of three teachers who implemented design and technology education ideas in their primary school classrooms for the first time. The teachers did not capitalise upon many of the opportunities for scaffolding their students' learning within the open-ended activities they implemented. Limitations of the teachers' conceptual and procedural knowledge of design and technology were elements that influenced their early experiences. The study has implications for professional developers planning programs in newly introduced areas of the curriculum to support teachers in supporting learning within open-ended and loosely structured problem solving activities. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
En el presente artículo pretendemos trazar algunas líneas generales destacadas por la investigación a propósito de la instrucción gramatical y su relación con el dominio del uso de la lengua. Hacemos referencia a algunas ideas del debate generado en el mundo anglosajón y francófono y en España. Nos centramos en algunas aportaciones realizadas en España en relación a aspectos como la metodología en el aula o los procesos de aprendizaje.
Resumo:
CISTI'2015 - 10ª Conferência Ibérica de Sistemas e Tecnologias de Informação, 17 a 20 de junho de 2015, Águeda, Aveiro, Portugal.
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
Neste workshop pretende-se apresentar uma aplicação móvel (Moxtra) que integra uma experiência de inovação pedagógica no âmbito do mobile-learning que está em pleno desenvolvimento, com a participação ativa dos estudantes e docentes das unidades curriculares de Hematologia Laboratorial I e II do curso de Ciências Biomédicas Laboratoriais. A adesão dos estudantes ao projeto mobile-learning é inédita no nosso país e tem sido muito positiva. O workshop terá dois objetivos: a) Conhecer os principais atributos da aplicação Moxtra; b) Construir um modelo de gestão de aprendizagem para uma unidade curricular.
Resumo:
In this work, we present a teaching-learning sequence on colour intended to a pre-service elementary teacher programme informed by History and Philosophy of Science. Working in a socio-constructivist framework, we made an excursion on the history of colour. Our excursion through history of colour, as well as the reported misconception on colour helps us to inform the constructions of the teaching-learning sequence. We apply a questionnaire both before and after each of the two cycles of action-research in order to assess students’ knowledge evolution on colour and to evaluate our teaching-learning sequence. Finally, we present a discussion on the persistence of deep-rooted alternative conceptions.