970 resultados para Downsizing EGR CO2 emissioni sovralimentazione


Relevância:

20.00% 20.00%

Publicador:

Resumo:

预计到本世纪末,大气CO2浓度将会增加到540~970ppm,大气CO2浓度升高所引起的全球气候变化已经受到广泛的关注。植物生长依赖CO2,并且对大气CO2浓度升高在结构和生理上产生响应。目前已有大量报道,从生态系统、群落、种群、个体、器官、组织、生理以及生化等水平上研究高浓度CO2所对植物产生的影响。但是有关高浓度CO2对植物有性生殖影响的报道却很少,同时多数实验均建立在短期的生殖响应,忽视了植物在长期高CO2浓度下具有的反馈作用和CO2浓度变化对植物的驯化作用。植物有性生殖与其生态适应性和农作物籽粒产量的关系极为密切;同时,植物有性生殖特性的变化,也可作为预测植物对全球气候变化响应的重要指标之一。为此,利用高浓度CO2对植物进行长期选择实验将很有必要。研究结果将为预测未来大气CO2浓度增加的条件下陆地生态系统的演变趋势、全球变化对植物有性生殖响应的方式和机制提供新的思路和有效方法。   在本研究中,我们以模式植物拟南芥(Arabidopsis thaliana)作为实验材料,利用370和700ppm CO2对其进行连续8个世代处理,首先研究高浓度CO2对每一个世代的拟南芥有性生殖特性的影响,然后比较各个世代中各种生殖特性指标变化的规律,从细胞、组织和个体尺度上揭示拟南芥有性生殖对全球变化的响应模式。此外,在700ppm CO2处理下,我们对拟南芥叶片生理、生化以及结构的变化进行了相关研究。两部分研究结果及主要结论如下:   首先,在每一个世代中,与370ppm CO2相比较,700ppm CO2处理显著促进了拟南芥开花,缩短生长周期,增加花、角果及种子等生殖的产量,降低种子N含量,提高种子C/N比、种子千粒重以及生殖生物量所占总生物量的比例等,而对种子萌发率、角果所含种子数目以及角果长度则无显著影响。但是, 通过对相同CO2浓度处理条件下,不同世代之间的研究结果比较发现,不同世代之间相关的生殖生物学指标并无显著差异。   其次,高浓度CO2显著降低叶片气孔密度、气孔指数、气孔导度以及蒸腾速率。在高浓度CO2处理下,叶肉细胞中叶绿体数目、叶绿体宽度和表观面积、淀粉粒大小和数量、叶片和细胞壁厚度等都显著增加,但是基粒内囊体膜的数量却显著下降。叶片中碳水化合物如可溶性总糖、淀粉以及纤维素含量在高浓度CO2下分别显著增加71.9%、78.7% 和 22.3%。此外,在高浓度CO2处理下,叶片中多数激素如如吲哚乙酸(indole-3-acetic acid, IAA)、赤霉素(gibberellin, GA)、玉米素核苷(zeatin riboside, ZR)、二氢玉米素核苷(dihydrozeatin riboside, DHZR)和异戊烯基腺苷(isopentenyl adenosine, iPA)均都显著地增加,而脱落酸(abscisic acid, ABA)含量却有所下降。最后,叶片中各种矿物质元素含量如N、P、K、Ca和Mg等含量在高浓度CO2处理下也都显著下降,而C/N比增加24.8%。   以上结果表明:   (1) 在每一个世代中,700ppm CO2处理对拟南芥各种有性生殖特性具有显著的影响,但是高浓度CO2处理对植物所引起的效应在多个世代以内并不能够传递给后代,所以在多个有性生殖世代内,高浓度CO2处理对植物生长、生殖没有驯化作用。   (2) 在高浓度CO2处理下,拟南芥叶片中叶绿体超微结构的变化,可能主要是由于叶绿体中淀粉粒数量和体积大小显著增加而引起。   (3) 在高浓度CO2处理下,由于拟南芥叶片内与促进细胞分裂与伸长的激素含量显著增加,从而对拟南芥植株生长发育速率的提高起了重要的作用。   (4) 拟南芥生长在高浓度CO2条件下,其叶片中各种矿质元素含量(如N、P、K、Ca和Mg)均显著降低,究其原因可能是,第一由于叶片中碳水化合物含量的显著增加而对矿物质元素具有稀释作用;第二由于蒸腾速率下降,引起矿质元素从根部随着蒸腾流运输到地上部分的含量相应减少。   

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本论文是国家自然科学基金重大项目“中国陆地生态系统对全球变化的反应模式研究”下子项目“对全球变化反应植物生态生理学的基础模型研究”中的重要部分。 本文研究了紫花苜蓿(Medicago Sativa L.)在C02倍增下光合作用、蒸腾作用、气孔导度、叶面积、物候进程、高度、以及生物量的生态生理变化,并在此基础上对苜蓿进行了生态生理模型化的研究。 在倍增(694ppm)和对照(375ppm) C02浓度下,对紫花苜蓿的生态生理学的研究表明,以整个生育期计,倍增组的表观光合作用比对照组可提高18.7%:气孔导度略有下降(2%);蒸腾作用减少了2.7%;水分利用效率提高了30.1%;叶面积增加了48.9%;每株植物白天的净光合总量可提高76.7%,另外,植株高度和整株生物量的测定也显示了C02增加对苜蓿的正效应。 本文还对生理指标的实测数据进行了模型化的研究。对光合作用模型和气孔导度模型中参数的拟合结果表明,C02倍增下,苜蓿的光能转化效率(α),电子传递速率(Jmax)比对照组都有明显的提高,最大气孔开度(Gsmax)略有下降.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

自工业革命以来,大气的C02浓度以前所未有的速度增加,已经由280μmol mol-1升高到了360μmol mol-l。据预测,到下个世纪中/末期,C02浓度将为目前的二倍。C02浓度升高及其引起的全球气候变化必将影响到植物的生长发育,进而对整个生态系统产生巨大影响。因此,有关C02浓度升高对各类生态系统的影响的研究引起了广泛关注,成为近年来的研究热点。早期的研究多数集中于考察C02浓度升高对植物个体水平生长发育的影响。然而,高C02对植物的效应严重依赖于具体物种和具体环境条件,使得基于由短期盆栽实验获得的研究结果不能够有效地预测自然生态系统的行为。因此,长期、原位处理实验越来越受到重视。由于原位研究的难度较大,目前这方面的研究还不是很多。有限研究结果显示,由于生境条件和种间关系方面的巨大差异,自然生态系统对C02浓度升高的反应迥异。 草原生态系统由于C02浓度控制上比较容易实现,而且其物质循环相对较快,因而一直是C02富集实验研究最多的一类植被,生态系统水平的研究更是如此。然而涉及的区域和草原类型并不多,不足以进行可靠预测。目前,关于C02升高效应,研究比较系统的草原生态系统主要集中在:美国Kansas的高草草原、美国California的一年生草原、瑞士西北部的石灰质草原、美国Colorado的矮草草原和一些牧场。我国总土地面积的40%为草地,类型丰富,然而相关研究不多,尤其是对自然生态系统的原位研究几乎为空白。 为揭示C02浓度升高对羊草草原生产力和碳平衡的效应,我们在中国科学院内蒙古草原生态系统定位研究站的永久羊草样地开展了两年的C02倍增实验(2001,2002)。在羊草样地选择相对均匀地段设置12个开顶式气室(直径1.8m),每个气室内分成4个小样方(0.5m×0.5m),其中6个气室在生长季给予加倍C02处理(约600μmol mol-l),另6个气室不补充C02(约300μmol moI-l)。地上部分用收割法取样,分种记录数量、高度和重量等指标,地下部分取样用环刀法。用Li-cor6400光合系统测定群落光合和呼吸速率。野外实验结束后,统一分析植物和土壤样品中的C、N等元素含量。另外,在内蒙古草原站院内设置了两组桶培实验,一组是取自羊草样地的带苗原状土,一组是取自羊草样地的混匀土,种上冰草(Agropyron cristatum)、紫花苜蓿(Medicago sativa)和无芒雀麦(Bromus inermis)的种子。2组桶培实验分别用两个水分梯度和两个C02梯度处理。水分处理分别为:浇水处理——每4天浇lOOOml水,相当于平均降雨量的160%;干旱处理——持续干旱,适时补水以保持植物不萎蔫,共浇水4000ml水。C02处理和取样方法与样地原位实验相同。主要研究结果和结论如下: 1)两年的C02加倍处理没有使羊草草原的生物量、植物种和功能型组成发生显著改变,桶培实验中,浇水处理显著促进了植物生长,原状土植物、种子苗实验的冰草和无芒雀麦对C02加倍处理同样不敏感,而种子苗实验的豆科植物紫花苜蓿在C02加倍处理下生物量显著提高。以上结果显示,由于水分和养分(特别是N)的限制,以及优势植物对C02的相对不敏感,C02浓度升高对羊草草原地上生物量和结构的效应相对不大。 2)羊草草原的根垂直分布在加倍C02条件下发生显著改变,但根生物量对C02加倍处 理相对不敏感。在4次取样中只有一次对C02加倍处理表现出显著变化,根长的变化与根生物量的变化不完全一致,根的比根长在加倍C02条件下增加。根垂直分布的变化趋势与降雨的时间分布相适应,干旱少雨时期C02使下层根量增加,多雨时期C02则使上层根量增加。以上结果显示,根的空间分布比根生物量对C02加倍处理更敏感。水分是根空间分布变化的驱动因子,加倍C02条件下,根空间分布的变化趋势倾向于优化对水分的充分利用。 3)加倍C02处理使羊草草原的群落光合速率显著提高,群落呼吸速率显著降低,因而使群落碳净输入量增加。土壤碳贮量占羊草草原碳总贮量的70%以上,碳总贮量及其组分(包括地上碳贮量、根碳贮量、土壤碳贮量)在两个C02浓度处理之问均没有显著差异。另外,加倍C02处理使羊草草原群落及其优势植物羊草的c:N比增加。以上结果显示,在加倍C02条件下羊草草原的碳净输入量增加,这意味着在未来高 C02条件F,羊草草原将作为碳汇对大气C02起反馈调节作用。其碳贮量对加倍C02 处理的不敏感与许多以前的研究结果相似,一般认为是由于土壤碳贮量本底太大, 掩盖了C02效应,这还有待于更长期原位实验的证实。羊草草原群落c:N比在高C02 浓度下的变化将影响凋落物降解、N素循环和动植物营养关系等,进而对生态系统 功能产生深远影响。