990 resultados para Dow Chemical Company
Resumo:
Vehicle emissions are a significant source of fine particles (Dp < 2.5 µm) in an urban environment. These fine particles have been shown to have detrimental health effects, with children thought to be more susceptible. Vehicle emissions are mainly carbonaceous in nature, and carbonaceous aerosols can be defined as either elemental carbon (EC) or organic carbon (OC). EC is a soot-like material emitted from primary sources while OC fraction is a complex mixture of hundreds of organic compounds from either primary or secondary sources (Cao et al., 2006). Therefore the ratio of OC/EC can aid in the identification of source. The purpose of this paper is to use the concentration of OC and EC in fine particles to determine the levels of vehicle emissions in schools. It is expected that this will improve the understanding of the potential exposure of children in a school environment to vehicle emissions.
Resumo:
Higher ambient temperatures will increase heat stress on workers, leading to impacts upon their individual health and productivity. In particular, research has indicated that higher ambient temperatures can increase the prevalence of urolithiasis. This thesis examines the relationship between ambient heat exposure and urolithiasis among outdoor workers in a shipbuilding company in Guangzhou, China, and makes recommendations for minimising the possible impacts of high ambient temperatures on urolithiasis. A retrospective 1:4 matched case-control study was performed to investigate the association between ambient heat exposure and urolithiasis. Ambient heat exposure was characterised by total exposure time, type of work, department and length of service. The data were obtained from the affiliated hospital of the shipbuilding company under study for the period 2003 to 2010. A conditional logistic regression model was used to estimate the association between heat exposure and urolithiasis. This study found that the odds ratio (OR) of urolithiasis for total exposure time was 1.5 (95% confidence interval (CI): 1.2–1.8). Eight types of work in the shipbuilding company were investigated, including welder, assembler, production security and quality inspector, planing machine operator, spray painter, gas-cutting worker and indoor employee. Five out of eight types of work had significantly higher risks for urolithiasis, and four of the five mainly consisted of outdoors work with ORs of 4.4 (95% CI: 1.7–11.4) for spray painter, 3.8 (95% CI: 1.9–7.2) for welder, 2.7 (95% CI: 1.4–5.0) for production security and quality inspector, and 2.2 (95% CI: 1.1–4.3) for assembler, compared to the reference group (indoor employee). Workers with abnormal blood pressure (hypertension) were more likely to have urolithiasis with an OR of 1.6 (95% CI: 1.0–2.5) compared to those without hypertension. This study contributes to the understanding of the association between ambient heat exposure and urolithiasis among outdoor workers in China. In the context of global climate change, this is particularly important because rising temperatures are expected to increase the prevalence of urolithiasis among outdoor workers, putting greater pressure on productivity, occupational health management and health care systems. The results of this study have clear implications for public health policy and planning, as they indicate that more attention is required to protect outdoor workers from heat-related urolithiasis.
Resumo:
A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO2) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO2 degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the well head and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180°C is consistently implemented.
Resumo:
10.1 Histamine and cytokines 10.1.1 Actions of histamine 10.1.2 Drugs that modify the actions of histamine 10.1.3 Cytokines 10.2 Eicosanoids 10.2.1 Cyclooxygenase (COX) and lipooxygenase system 10.2.2 Actions of eicosanoids 10.2.3 Drugs that modify the actions of eicosanoids 10.2.3.1 Inhibit phospholipase A2 10.2.3.2 Non-selective cyclooxygenase inhibitors 10.2.3.3 Selective COX-2 inhibitors 10.2.3.4 Agonists at prostaglandin receptors 10.2.3.5 Leukotriene receptor antagonists 10.3. 5-Hydroxtryptamine (serotonin), nitric oxide, and endothelin 10.3.1 5-HT and migraine 10.3.2 5-HT and the gastrointestinal tract 10.3.3 Nitric oxide and angina 10.3.4 Nitric oxide and erectile dysfunction 10.3.5 Endothelin and pulmonary hypertension
Resumo:
Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.
Resumo:
Having a reliable understanding about the behaviours, problems, and performance of existing processes is important in enabling a targeted process improvement initiative. Recently, there has been an increase in the application of innovative process mining techniques to facilitate evidence-based understanding about organizations' business processes. Nevertheless, the application of these techniques in the domain of finance in Australia is, at best, scarce. This paper details a 6-month case study on the application of process mining in one of the largest insurance companies in Australia. In particular, the challenges encountered, the lessons learned, and the results obtained from this case study are detailed. Through this case study, we not only validated existing `lessons learned' from other similar case studies, but also added new insights that can be beneficial to other practitioners in applying process mining in their respective fields.
Resumo:
Lignocellulosic materials including agricultural, municipal and forestry residues, and dedicated bioenergy crops offer significant potential as a renewable feedstock for the production of fuels and chemicals. These products can be chemically or functionally equivalent to existing products that are produced from fossil-based feedstocks. To unlock the potential of lignocellulosic materials, it is necessary to pretreat or fractionate the biomass to make it amenable to downstream processing. This chapter explores current and developing technologies for the pretreatment and fractionation of lignocellulosic biomass for the production of chemicals and fuels.
Resumo:
Detailed analytical electron microscope (AEM) studies of yellow whiskers produced by chemical vapor deposition (CVD)1 show that two basic types of whiskers are produced at low temperatures (between 1200°C and 1400°C) and low boron to carbon gas ratios. Both whisker types show planar microstructures such as twin planes and stacking faults oriented parallel to, or at a rhombohedral angle to, the growth direction. For both whisker types, the presence of droplet-like terminations containing both Si and Ni indicate that the growth process during CVD is via a vapor-liquid-solid (VLS) mechanism.
Resumo:
Chemical treatments of kaolins to produce nanocrystalline or "X-ray amorphous", stable aluminosilicates with variable - but reproducible - types of micro- and meso-porosity have been developed. These materials show cation exchange capacities and surface area values significantly higher (ranging from 10x to 100x) than kaolin and show good acid resistance to pH~3.0. The combination of these properties offers strong potential for many new applications of kaolin-derived materials in large worldwide markets such as environmental remediation and catalysis. Kaolin amorphous derivative (KAD) is well-suited to removal of many toxic metals down to ppb range from acid mine drainage. Engineering development trials of the KAD manufacturing process and the utilisation of KAD in polluted waters such as acid mine drainage indicates that scale-up from bench-scale is not a barrier to market entry.
Resumo:
In this paper we give an overview of some very recent work, as well as presenting a new approach, on the stochastic simulation of multi-scaled systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and present a new approach which couples the three regimes mentioned above. We then apply this approach to a biologically inspired problem involving the expression and activity of LacZ and LacY proteins in E coli, and conclude with a discussion on the significance of this work. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Geothermal industry in Australia and Queensland is in its infancy and for hot dry rock (HDR) geothermal energy, it is very much in the target identification and resource definition stages. As a key effort to assist the geothermal industry and exploration for HDR in Queensland, we are developing a comprehensive and new integrated geochemical and geochronological database on igneous rocks. To date, around 18,000 igneous rocks have been analysed across Queensland for chemical and/or age information. However, these data currently reside in a number of disparate datasets (e.g., Ozchron, Champion et al., 2007, Geological Survey of Queensland, journal publications, and unpublished university theses). The goal of this project is to collate and integrate these data on Queensland igneous rocks to improve our understanding of high heat producing granites in Queensland, in terms of their distribution (particularly in the subsurface), dimensions, ages, and controlling factors in their genesis.
Resumo:
Purpose – The purpose of this paper is to examine the environmental disclosure initiatives of Niko Resources Ltd – a Canada-based multinational oil and gas company – following the two major environmental blowouts at a gas field in Bangladesh in 2005. As part of the examination, the authors particularly focus on whether Niko's disclosure strategy was associated with public concern pertaining to the blowouts. Design/methodology/approach – The authors reviewed news articles about Niko's environmental incidents in Bangladesh and Niko's communication media, including annual reports, press releases and stand-alone social responsibility report over the period 2004-2007, to understand whether news media attention as proxy for public concern has an impact on Niko's disclosure practices in relation to the affected local community in Bangladesh. Findings – The findings show that Niko did not provide any non-financial environmental information within its annual reports and press releases as a part of its responsibility to the local community which was affected by the blowouts, but it did produce a stand-alone report to address the issue. However, financial environmental disclosures, such as the environmental contingent liability disclosure, were adequately provided through annual reports to meet the regulatory requirements concerning environmental persecutions. The findings also suggest that Niko's non-financial disclosure within a stand-alone report was associated with the public pressures as measured by negative media coverage towards the Niko blowouts. Research limitations/implications – This paper concludes that the motive for Niko's non-financial environmental disclosure, via a stand-alone report, reflected survival considerations: the company's reaction did not suggest any real attempt to hold broader accountability for its activities in a developing country.
Resumo:
Particulate matter is common in our environment and has been linked to human health problems particularly in the ultrafine size range. A range of chemical species have been associated with particulate matter and of special concern are the hazardous chemicals that can accentuate health problems. If the sources of such particles can be identified then strategies can be developed for the reduction of air pollution and consequently, the improvement of the quality of life. In this investigation, particle number size distribution data and the concentrations of chemical species were obtained at two sites in Brisbane, Australia. Source apportionment was used to determine the sources (or factors) responsible for the particle size distribution data. The apportionment was performed by Positive Matrix Factorisation (PMF) and Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS), and the results were compared with information from the gaseous chemical composition analysis. Although PCA/APCS resolved more sources, the results of the PMF analysis appear to be more reliable. Six common sources identified by both methods include: traffic 1, traffic 2, local traffic, biomass burning, and two unassigned factors. Thus motor vehicle related activities had the most impact on the data with the average contribution from nearly all sources to the measured concentrations higher during peak traffic hours and weekdays. Further analyses incorporated the meteorological measurements into the PMF results to determine the direction of the sources relative to the measurement sites, and this indicated that traffic on the nearby road and intersection was responsible for most of the factors. The described methodology which utilised a combination of three types of data related to particulate matter to determine the sources could assist future development of particle emission control and reduction strategies.
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.