912 resultados para Defect chemistry
Resumo:
The optical and electrical recovery processes of the metastable state of the EL2 defect artificially created in n‐type GaAs by boron or oxygen implantation are analyzed at 80 K using optical isothermal transient spectroscopy. In both cases, we have found an inhibition of the electrical recovery and the existence of an optical recovery in the range 1.1-1.4 eV, competing with the photoquenching effect. The similar results obtained with both elements and the different behavior observed in comparison with the native EL2 defect has been related to the network damage produced by the implantation process. From the different behavior with the technological process, it can be deduced that the electrical and optical anomalies have a different origin. The electrical inhibition is due to the existence of an interaction between the EL2 defect and other implantation‐created defects. However, the optical recovery seems to be related to a change in the microscopic metastable state configuration involving the presence of vacancies
Resumo:
In 1999, a set of coordinated projects and investments whose principal objective was to transform Barcelona into one of the main distribution points of southern Europe resulted in the relocation of the Llobregat River mouth. The mouth was relocated by draining the old river mouth and constructing a new one. The aim of this study was to characterise the physico-chemical properties and the aquatic macroinvertebrate communities of the new river mouth and to monitor the changes experienced by the estuarine environment during its creation. A sampling point was established in the river 1.8 km upstream from its connection with the new mouth, and two sampling points were established in the new mouth. Samples of water and macroinvertebrates were collected every two months from May 2004 to June 2005, covering the periods before (from May to September 2004) and after (from September 2004 to June 2005) the new mouth was connected to the river and the sea. During the period before its connection to the river and the sea, the new mouth was functionally similar to a lagoon, with clear waters, charophytes and a rich invertebrate community. After the connection was completed, seawater penetrated the river mouth and extended to the connection point with the river (approximately 3.9 km upstream). An increase in conductivity from 4-6 mS cm 1 to 24-30 mS cm 1 caused important changes in the macroinvertebrate community of the new mouth. An initial defaunation was followed by a colonisation of the new mouth by brackish-water and marine invertebrate species. Due to its design (which allows the penetration of the sea) and the decreased discharge from the lower part of the Llobregat River, the new mouth has become an arm of the sea
Resumo:
The interface of MgO/Ag(001) has been studied with density functional theory applied to slabs. We have found that regular MgO films show a small adhesion to the silver substrate, the binding can be increased in off-stoichiometric regimes, either by the presence of O vacancies at the oxide film or by a small excess of O atoms at the interface between the ceramic to the metal. By means of theoretical methods, the scanning tunneling microscopy signatures of these films is also analyzed in some detail. For defect free deposits containing 1 or 2 ML and at low voltages, tunnelling takes place from the surface Ag substrate, and at large positive voltages Mg atoms are imaged. If defects, oxygen vacancies, are present on the surface of the oxide they introduce much easier channels for tunnelling resulting in big protrusions and controlling the shape of the image, the extra O stored at the interface can also be detected for very thin films.
Resumo:
During transapical transcatheter aortic valve replacement (TA-TAVR), the apical closure remains a challenge for the surgeon, having the risk for ventricular tear and massive bleeding. Apical closure devices are already under clinical evaluation, but only a few can lead to a full percutaneous TA-TAVR. We describe the successful use of a 9-mm myocardial occluder (ventricular septal defect occluder) that was used to seal the apex after a standard TA-TAVR (using the Sapien XT 23-mm transcatheter valve and the Ascendra + delivery system). The placement of the nonmodified myocardial occluder was performed through the Ascendra + delivery system, with a very small amount of blood loss and an acceptable sealing of the apical tear. This approach is feasible and represents a further step toward true-percutaneous transapical heart valve procedures. Modified apical occluders are under evaluation in animal models.
Resumo:
Automated Fiber Placement is being extensively used in the production of major composite components for the aircraft industry. This technology enables the production of tow-steered panels, which have been proven to greatly improve the structural efficiency of composites by means of in-plane stiffness variation and load redistribution. However, traditional straight-fiber architectures are still preferred. One of the reasons behind this is related to the uncertainties, as a result of process-induced defects, in the mechanical performance of the laminates. This experimental work investigates the effect of the fiber angle discontinuities between different tow courses in a ply on the un-notched and open-hole tensile strength of the laminate. The influence of several manufacturing parameters are studied in detail. The results reveal that 'ply staggering' and '0% gap coverage' is an effective combination in reducing the influence of defects in these laminates
Resumo:
The conversion of solar energy into more useful forms of energy, such as chemical fuels or electricity, is one of the central problems facing modern science. Progress in photochemistry and chemical synthesis has led to a point where light energy conversion by means of artificial molecular devices can be rationally attempted. In this article, a general approach towards this challenging goal is presented.
Resumo:
With the proposal to search for universal cooperation in the field of Medicinal Chemistry, the IUPAC group has elaborated a line of work divided into two phases: a- An Awareness of the true situation of Medicinal Chemistry in the different geographic areas of the world; b- A proposal of actions as to achieve more effective cooperation. This first report presents and discusses the actual situation in South and Central America as well as in sub-Saharan Africa.
Resumo:
Oxyradicals play a tole in several diseases. While for several decades the hydroxyl radical - produced via the Fenton reaction - has been considered the species that initiates oxyradical damage, new findings suggest that much of this damage can be ascribed to peroxynitrite, O=NOO-, formed from the reaction of the superoxide anion with nitrogen monoxide near activated macrophages. The rate constant for the reaction of this reaction has been investigated by flash photolysis and was found to be significantly higher than previously described in the literature, 1.9 x 10(10) M-1s-1. Studies of the isomerization to nitrate resulted in the discovery of a complex between peroxynitrite and its protonated form with a stability constant of 1 x 10(4) M-1. Some of the harmful reaction of peroxynitrous acid have been ascribed to the hydroxyl radical as a product of homolysis of the O-O bond during the conversion to nitrate. Kinetics of the isomerization reaction as a function of pressure show that the activation volume is only +1.5+1.0 ml mol-1, which is inconsistent with homolysis. Instead, an intermediate, possibly a distorted trans-isomer of O=NOOH could be responsible for the harmful reactions of peroxynitrite.
Resumo:
This paper reports the results of a three-year study of the effectiveness of mini-projects in a first year laboratory course in chemistry at a Scottish university. A mini-project is a short, practical problem which requires for its solution the application of the knowledge and skills developed in previously completed set experiments. A number of recommendations have been made about the most appropriate ways of introducing mini-projects into undergraduate laboratory course. The main hypothesis of this survey was concerned with the value of mini-projects in laboratory courses formulated within the context of Information Processing Theory.
Resumo:
Internet publication will radically alter how chemists will publish their research in the next century. In this article, we describe two fundamental changes: enhanced chemical publication which allows chemists to publish materials that cannot be published on paper and end-user customization which allows readers to read articles prepared to meet their specifications. These concepts have been implemented within the Internet Journal of Chemistry, a new journal designed to employ the latest technologies for chemical publications.
Resumo:
From an analysis of a learning model based on the theory of information processing four hypothesis were developed for improving the design of laboratory courses. Three of these hypotheses concerned specific procedures to minimise the load on students' working memories (or working spaces) and the fourth hypothesis was concerned with the value of mini-projects in enhancing meaningful learning of the knowledge and skills underpinning the set experiments. A three-year study of a first year undergraduate chemistry laboratory course at a Scottish university has been carried out to test these four hypotheses. This paper reports the results of the study relevant to the three hypotheses about the burden on students' working spaces. It was predicted from the learning model that the load on students working space should be reduced by appropriate changes to the written instructions and the laboratory organisation and by the introduction of prelab-work and prelab-training in laboratory techniques. It was concluded from research conducted over the three years period that all these hypothesised changes were effective both in reducing the load on students' working spaces and in improving their attitudes to the laboratory course.
Resumo:
The present paper is a review about basic principles of the molecular mechanics that is the most important tool used in molecular modeling area, and their applications to the calculation of the relative stability and chemical reactivity of organometalic and coordination compounds. We show how molecular mechanics can be successfully applied to a wide variety of inorganic systems.
Resumo:
Beer brewing is an intricate process encompassing mixing and further elaboration of four essential raw materials, including barley malt, brewing water, hops and yeast. Particularly hops determine to a great extent typical beer qualities such as bitter taste, hoppy flavour, and foam stability. Conversely, hop-derived bitter acids account for an offending lightstruck flavour, which is formed on exposure of beer to light. These various processes are presented in detail, while due emphasis is placed on state-of-the-art hop technology, which provides brewers with efficient means to control bitterness, foam, and light-stability thereby allowing for the production of beers with consistent quality.