829 resultados para Data selection
Resumo:
For increasing the usability of a medical device the usability engineering standards IEC 60601-1-6 and IEC 62366 suggest incorporating user information in the design and development process. However, practice shows that integrating user information and the related investigation of users, called user research, is difficult in the field of medical devices. In particular, identifying the most appropriate user research methods is a difficult process. This difficulty results from the complexity of the medical device industry, especially with respect to regulations and standards, the characteristics of this market and the broad range of potential user research methods available from various research disciplines. Against this background, this study aimed at guiding designers and engineers in selecting effective user research methods according to their stage in the design process. Two approaches are described which reduce the complexity of method selection by summarizing the high number of methods into homogenous method classes. These approaches are closely connected to the medical device industry characteristic design phases and therefore provide the possibility of selecting design-phase- specific user research methods. In the first approach potential user research methods are classified after their characteristics in the design process. The second approach suggests a method summarization according to their similarity in the data collection techniques and provides an additional linkage to design phase characteristics. Both approaches have been tested in practice and the results show that both approaches facilitate user research method selection. © 2009 Springer-Verlag.
Resumo:
A central goal of evolutionary genetics is an understanding of the forces responsible for the observed variation, both within and between species. Theoretical and empirical work have demonstrated that genetic recombination contributes to this variation by breaking down linkage between nucleotide sites, thus allowing them to behave independently and for selective forces to act efficiently on them. The Drosophila fourth chromosome, which is believed to experience no-or very low-rates of recombination has been an important model for investigating these effects. Despite previous efforts, central questions regarding the extent of recombination and the predominant modes of selection acting on it remain open. In order to more comprehensively test hypotheses regarding recombination and its potential influence on selection along the fourth chromosome, we have resequenced regions from most of its genes from Drosophila melanogaster, D. simulans, and D. yakuba. These data, along with available outgroup sequence, demonstrate that recombination is low but significantly greater than zero for the three species. Despite there being recombination, there is strong evidence that its frequency is low enough to have rendered selection relatively inefficient. The signatures of relaxed constraint can be detected at both the level of polymorphism and divergence.
Resumo:
The assembly of any manufactured product involves joining. This paper describes ways of selecting processes for joining. The method allows discrimination of the joint geometry, joint loading, material, and other attributes of the joint itself, identifying the subset of available processes capable of meeting a given set of design constraints. A relational database containing data-tables for joining processes, materials to be joined, and joint geometry and mode of loading, allows the attributes of each of these to be stored in an appropriate format, and permits links to be created between those that are related. A search engine isolates the processes that meet design requirements on material, joint geometry and loading. The method is illustrated in Part 2 by case studies, utilising software that embodies the method.
Resumo:
Background: There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. Aim. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. Methods. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). Results: The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. Conclusions: A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection. © 2011 Jun et al.
Identifying cancer subtypes in glioblastoma by combining genomic, transcriptomic and epigenomic data
Resumo:
We present a nonparametric Bayesian method for disease subtype discovery in multi-dimensional cancer data. Our method can simultaneously analyse a wide range of data types, allowing for both agreement and disagreement between their underlying clustering structure. It includes feature selection and infers the most likely number of disease subtypes, given the data. We apply the method to 277 glioblastoma samples from The Cancer Genome Atlas, for which there are gene expression, copy number variation, methylation and microRNA data. We identify 8 distinct consensus subtypes and study their prognostic value for death, new tumour events, progression and recurrence. The consensus subtypes are prognostic of tumour recurrence (log-rank p-value of $3.6 \times 10^{-4}$ after correction for multiple hypothesis tests). This is driven principally by the methylation data (log-rank p-value of $2.0 \times 10^{-3}$) but the effect is strengthened by the other 3 data types, demonstrating the value of integrating multiple data types. Of particular note is a subtype of 47 patients characterised by very low levels of methylation. This subtype has very low rates of tumour recurrence and no new events in 10 years of follow up. We also identify a small gene expression subtype of 6 patients that shows particularly poor survival outcomes. Additionally, we note a consensus subtype that showly a highly distinctive data signature and suggest that it is therefore a biologically distinct subtype of glioblastoma. The code is available from https://sites.google.com/site/multipledatafusion/
Resumo:
This paper is part of a larger PhD research project examining the apparent conflict in UK planning between energy efficiency and conservation for the retrofit of the thermal envelope of the existing building stock. Review of the literature shows that the UK will not meet its 2050 emission reduction target without substantial improvement to the energy performance of the thermal envelope of the existing building stock and that significantly, 40% of the existing stock has heritage status and may be exempted from Building Regulations. A review of UK policy and legislation shows that there are clear national priorities towards reducing emissions and addressing climate change, yet also shows a movement towards local decision making and control. This paper compares the current status of thirteen London Boroughs in respect to their position on thermal envelope retrofit for heritage and traditionally constructed buildings. Data collection is through ongoing surveys and interviews that compare statistical data, planning policies, sustainability and environmental priorities, and Officer decision-making. This paper finds that there is a lack of consistency in application of planning policy across Boroughs and suggests that this is a barrier to the up-take of energy efficient retrofit. Various recommendations are suggested at both national and local level which could help UK planning and planning officers deliver more energy efficient heritage retrofits.
Resumo:
In chemistry for chemical analysis of a multi-component sample or quantitative structure-activity/property relationship (QSAR/QSPR) studies, variable selection is a key step. In this study, comparisons between different methods were performed. These methods include three classical methods such as forward selection, backward elimination and stepwise regression; orthogonal descriptors; leaps-and-bounds regression and genetic algorithm. Thirty-five nitrobenzenes were taken as the data set. From these structures quantum chemical parameters, topological indices and indicator variable were extracted as the descriptors for the comparisons of variable selections. The interesting results have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, the comparison of orthogonal descriptors and Leaps-and-Bounds regression analysis is performed. The results obtained by using orthogonal descriptors are better than that obtained by using Leaps-and-Bounds regression for the data set of nitrobenzenes used in this study. Leaps-and-Bounds regression can be used effectively for selection of variables in quantitative structure-activity/property relationship(QSAR/QSPR) studies. Consequently, orthogonalisation of descriptors is also a good method for variable selection for studies on QSAR/QSPR.
Resumo:
Forage selection plays a prominent role in the process of returning cultivated lands back into grasslands. The conventional method of selecting forage species can only provide attempts for problem-solving without considering the relationships among the decision factors globally. Therefore, this study is dedicated to developing a decision support system to help farmers correctly select suitable forage species for the target sites. After collecting data through a field study, we developed this decision support system. It consists of three steps: (1) the analytic hierarchy process (AHP), (2) weights determination, and (3) decision making. In the first step, six factors influencing forage growth were selected by reviewing the related references and by interviewing experts. Then a fuzzy matrix was devised to determine the weight of each factor in the second step. Finally, a gradual alternative decision support system was created to help farmers choose suitable forage species for their lands in the third step. The results showed that the AHP and fuzzy logic are useful for forage selection decision making, and the proposed system can provide accurate results in a certain area (Gansu Province) of China.
Resumo:
In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.
Resumo:
This thesis presents a learning based approach for detecting classes of objects and patterns with variable image appearance but highly predictable image boundaries. It consists of two parts. In part one, we introduce our object and pattern detection approach using a concrete human face detection example. The approach first builds a distribution-based model of the target pattern class in an appropriate feature space to describe the target's variable image appearance. It then learns from examples a similarity measure for matching new patterns against the distribution-based target model. The approach makes few assumptions about the target pattern class and should therefore be fairly general, as long as the target class has predictable image boundaries. Because our object and pattern detection approach is very much learning-based, how well a system eventually performs depends heavily on the quality of training examples it receives. The second part of this thesis looks at how one can select high quality examples for function approximation learning tasks. We propose an {em active learning} formulation for function approximation, and show for three specific approximation function classes, that the active example selection strategy learns its target with fewer data samples than random sampling. We then simplify the original active learning formulation, and show how it leads to a tractable example selection paradigm, suitable for use in many object and pattern detection problems.
Resumo:
The article considers the arguments that have been made in defence of social media screening as well as issues that arise and may effectively erode the reliability and utility of such data for employers. First, the authors consider existing legal frameworks and guidelines that exist in the UK and the USA, as well as the subsequent ethical concerns that arise when employers access and use social networking content for employment purposes. Second, several arguments in favour of the use of social networking content are made, each of which is considered from several angles, including concerns about impression management, bias and discrimination, data protection and security. Ultimately, the current state of knowledge does not provide a definite answer as to whether information from social networks is helpful in recruitment and selection.
Resumo:
Rowland, J.J. (2003) Model Selection Methodology in Supervised Learning with Evolutionary Computation. BioSystems 72, 1-2, pp 187-196, Nov
Resumo:
R. Jensen and Q. Shen. Fuzzy-Rough Sets Assisted Attribute Selection. IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 73-89, 2007.
Resumo:
X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.