961 resultados para Cytochrome P450 2A6
Resumo:
Head and neck squamous cell carcinoma (HNSCC) is associated with environmental factors, especially tobacco and alcohol consumption. Most of the carcinogens present in tobacco smoke are converted into DNA-reactive metabolites by cytochrome P450 (CYPs) enzymes and detoxification of these substances is performed by glutathione S-transferases (GSTs). It has been suggested that genetic alterations, such as polymorphisms, play an important role in tumorigenesis and HNSCC progression. The aim of this study was to investigate CYP1A1, CYP1A2, CYP2E1, GSTM1, and GSTT1 polymorphisms as risk factors in HNSCC and their association with clinicopathologic data. The patients comprised 153 individuals with HNSCC (cases) and 145 with no current or previous diagnosis of cancer (controls). Genotyping of the single nucleotide polymorphisms (SNPs) of the CYP1A1, CYP1A2, and CYP2E1 genes was performed by PCR-RFLP and the GSTM1 and GSTT1 copy number polymorphisms (CNPs) were analyzed by PCR-multiplex. As expected, a significant difference was detected for tobacco and alcohol consumption between cases and controls (P < 0.001). It was observed that the CYP1A2*1D (OR = 16.24) variant and GSTM1 null alleles (OR = 0.02) confer increased risk of HNSCC development (P < 0.001). In addition, head and neck cancer alcohol consumers were more frequently associated with the CYP2E1*5B variant allele than control alcohol users (P < 0.0001, OR = 190.6). The CYP1A2*1C polymorphism was associated with tumor recurrence (log-rank test, P = 0.0161). The CYP2E1*5B and GSTM1 null alleles were significantly associated with advanced clinical stages (T3 + T4; P = 0.022 and P = 0.028, respectively). Overall, the findings suggested that the genetic polymorphisms studied are predictors of risk and are also associated with tumor recurrence, since they are important for determining the parameters associated with tumor progression and poor outcomes in HNSCC. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
After 12 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy with inadequate response, 10 patients received clomipramine and 11 received quetiapine as augmentation agents of the SSRI. The primary outcome measure was the difference between initial and final scores of the YaleBrown Obsessive-Compulsive Scale (Y-BOCS), rated in a blinded fashion, and the score of clinical global improvement (CGI-I). Statistical analyses were performed using nonparametric tests to evaluate treatment efficacy and the difference between treatment groups. Percentile plots were constructed with YBOCS scores from the clomipramine and quetiapine groups. Considering response a >= 35% reduction in the initial Y-BOCS score plus a rating of `much improved` or `very much improved` on CGI-I, four of eleven quetiapine patients and one out of ten clomipramine patients were classified as responders. The mean final Y-BOCS score was significantly lower than baseline in the quetiapine augmentation group (P = 0.023), but not in the clomipramine augmentation group (P = 0.503). The difference between groups showed a trend towards significance only at week 4, the mean Y-BOCS score being lower for those receiving quetiapine (P = 0.052). A difference between groups was also observed at week 4 according to percentile plots. These results corroborate previous findings of quetiapine augmentation efficacy in obsessive-compulsive disorder (OCD). Clomipramine augmentation did not produce a significant reduction in Y-BOCS scores. Higher target maximum dosages might have yielded different results.
Resumo:
Metoprolol is a beta-blocker and its racemic mixture is used for the treatment of hypertension. In the present study we investigated the influence of CYP2D and CYP3A on the stereoselective metabolism of metoprolol in rats. Male Wistar rats (n = 6 per group) received racemic metoprolol (15 mg/kg) orally, with or without pretreatment with the CYP inhibitor ketoconazole (50 mg/kg), cimetidine (150 mg/kg), or quinidine (80 mg/kg). Blood samples were collected up to 48 h after metoprolol administration. The plasma concentrations of the stereoisomers of metoprolol, O-demethylmetoprolol (ODM), alpha-hydroxymetoprolol (OHM) (Chiralpak(R) AD column), and metoprolol acidic metabolite (AODM) (Chiralcel(R) OD-R column) were determined by HPLC using fluorescence detection (lambda(exc) = 229 nm; lambda(em) = 298 nm). CYP3A inhibition by ketoconazole reduced the plasma concentrations of ODM and AODM and favored the formation of OHM. CYP2D and CYP3A inhibition by cimetidine reduced the plasma concentrations of OHM and AODM and favored the formation of ODM. The inhibition of CYP2D by quinidine reduced the plasma concentrations of OHM and favored the formation of ODM. In conclusion, the results suggest that CYP3A is involved in the formation of ODM and CYP2D is involved in the formation of AODM. Chirality 21:886-893, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Much of the individual variation in drug response is due to genetic drug metabolic polymorphisms. Clinically relevant examples include acetylator status; cytochrome P450 2D6, 2C9 and 2C19 polymorphisms; and thiopurine methyltransferase deficiency. It is important to be aware of which drugs are subject to pharmacogenetic variability. In the future, population-based pharmacogenetic testing will allow more individualized drug treatment and will avoid the current empiricism.
Resumo:
The drugs which provide specific relief from migraine attacks, the ergopeptides (ergotamine and dihydroergotamine) and the various 'triptans' (notably sumatriptan), are often prescribed for persons already taking various migraine preventative agents, and sometimes drugs for other indications. As a result, migraine-specific drugs may become involved in drug-drug interactions. The migraine-specific drugs all act as agonists at certain subclasses of serotonin (5-hydroxytryptamine; 5-MT) receptor, particularly those of the 5-HT1D subtype, and produce vasoconstriction through these receptor-mediated mechanisms. The oral bioavailabilities of these drugs, particularly those of the ergopeptides, are often incomplete, due to extensive presystemic metabolism. As a result, if migraine-specific agents are coadministered with drugs with vasoconstrictive properties, or with drugs which inhibit the metabolism of the migraine-specific agents, there is a risk of interactions occurring which produce manifestations of excessive vasoconstriction. This can also occur through pharmacodynamic mechanisms, as when ergopeptides or triptans are coadministered with methysergide or propranolol (although a pharmacokinetic element may apply in relation to the latter interaction), or if one migraine-specific agent is used shortly after another. When egopeptide metabolism is inhibited by the presence of macrolide antibacterials, particularly troleandomycin and erythromycin, the resultant interaction can produce ergotism, sometimes leading to gangrene. Similar pharmacokinetic mechanisms, with their vasoconstrictive consequences, probably apply to combination of the ergopeptides with HIV protease inhibitors (indinavir and ritonavir), heparin, cyclosporin or tacrolimus. Inhibition of triptan metabolism by monoamine oxidase A inhibitors, e.g. moclobemide, may raise circulating triptan concentrations, although this does not yet seem to have led to reported clinical problems. Caffeine may cause increased plasma ergotamine concentrations through an as yet inadequately defined pharmacokinetic interaction. However, a direct antimigraine effect of caffeine may contribute to the claimed increased efficacy of ergotamine-caffeine combinations in relieving migraine attacks. Serotonin syndromes have been reported as probable pharmacodynamic consequences of the use of ergots or triptans in persons taking serotonin reuptake inhibitors. There have been two reports of involuntary movement disorders when sumatriptan has been used by patients already taking loxapine. Nearly all the clinically important interactions between the ergopeptide antimigraine agents and currently marketed drugs are likely to have already come to notice. In contrast, new interactions involving the triptans are likely to be recognised as additional members of this family of drugs, with their different patterns of metabolism and pharmacokinetics, are marketed.
Resumo:
The disposition kinetics of six cationic drugs in perfused diseased and normal rat livers were determined by multiple indicator dilution and related to the drug physicochemical properties and liver histopathology. A carbon tetrachloride (CCl4)induced acute hepatocellular injury model had a higher fibrosis index (FI), determined by computer-assisted image analysis, than did an alcohol-induced chronic hepatocellular injury model. The alcohol-treated group had the highest hepatic alpha(1)- acid glycoprotein, microsomal protein (MP), and cytochrome P450 (P450) concentrations. Various pharmacokinetic parameters could be related to the octanol-water partition coefficient (log P-app) of the drug as a surrogate for plasma membrane partition coefficient and affinity for MP or P450, the dependence being lower in the CCl4-treated group and higher in the alcohol-treated group relative to controls. Stepwise regression analysis showed that hepatic extraction ratio, permeability-surface area product, tissue-binding constant, intrinsic clearance, partition ratio of influx (k(in)) and efflux rate constant (k(out)), and k(in)/k(out) were related to physicochemical properties of drug (log P-app or pK(a)) and liver histopathology (FI, MP, or P450). In addition, hepatocyte organelle ion trapping of cationic drugs was evident in all groups. It is concluded that fibrosis-inducing hepatic disease effects on cationic drug disposition in the liver may be predicted from drug properties and liver histopathology.
Resumo:
Cylindrospermopsin (CYN) is a hepatotoxin isolated from the blue-green alga Cylindrospermopsis raciborskii. The role of both glutathione (GSH) and the cytochrome P450 enzyme system (P450) in the mechanism of toxicity of CYN has been previously investigated in in vitro systems. We have investigated the role of GSH and P450 in vivo in mice. Mice pre-treated with buthionine sulphoximine and diethyl maleate to deplete hepatic GSH prior to dosing with 0.2 mg/kg CYN showed a seven-day survival rate of 5/13 while the control group rate was 9/14. Dosing mice with 0.2 mg/kg CYN produced a small decrease in hepatic GSH with a characteristic rebound effect at 24 h, The magnitude of this effect is however small and combined with the non-significant difference in survival rates after GSH depletion suggest depletion of GSH by CYN could not be a primary mechanism for CYN toxicity, Conversely, pro-treatment with piperonyl butoxide, a P450 inhibitor, protected mice against CYN toxicity giving a survival rate of 10/10 compared with 4/10 in the control group (p < 0.05 Chi squared) and was protective at doses up to 0.8 mg/kg, suggesting activation of CYN by P450 is of primary importance in the mechanism of action. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This present study was undertaken to assess potential effects of cadmium on CYP4A11 apoprotein in human liver and kidney as detected by Western blotting using a highly specific anti-peptide antibody. Liver and kidney cortex samples were autopsy specimens of 37 individuals (26 mates and I I females) whose ages ranged from 3 to 89 years. All were Caucasians who had not been exposed to cadmium in the workplace. Reduced CYP4A11 apoprotein levels were found in chronic hepatitis samples and in liver samples showing fatty changes. In contrast, increased CYP4A11 apoprotein levels were found in liver samples having higher cadmium content compared to the lower cadmium content samples. Increased CYP4A11 levels were also found in liver samples from female donors, compared to male donors; the difference being attributable to higher female liver cadmium burden. In distinction to liver, lowered CYP4A11 levels were seen in the kidney cortex samples which have high cadmium content, It is proposed here that the difference between the absolute cadmium burden of the liver and kidney samples may be responsible for the different patterns of expression of CYP4A11 in these two tissues. Further, since cadmium exposure may be associated with derangement in blood pressure control, it is interesting to note the possible relationship between altered CYP4A11-dependent production of arachidonic acid hydroxy and epoxy metabolites in kidney cortex and altered control of blood pressure. Our findings provide a possible link between these observations. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
This paper investigates the possible link between non-workplace cadmium (Cd) exposure, cytochrome P450 expression and hypertension. We present results of our investigation into the relationships between liver and kidney Cd burdens and the abundance of the CYP isoform 4A11. Our data show associations between non-workplace Cd exposure and changes in the abundance of hepatic and renal cortical CYP4A11. In liver the levels of immunochemically detectable CYP4A11 were positively correlated with tissue Cd content while in contrast CYP4A11 abundance was inversely correlated with kidney Cd burden. These differences are most likely related to the different Cd burden of the tissues. These observations suggest the potential for involvement of Cd as a mediator of CYP4A11 expression in kidney cortex and indicate that elevations in kidney Cd content may be involved in hypertension via alteration of the expression of this particular isoform. Potential mechanisms by which Cd may alter CYP4A11 expression are discussed briefly. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
One of seven poor metabolizers of coumarin found in Thai subjects was previously genotyped as heterozygote for the CYP2A6*4 (whole deletion) and CYP2A6*9. Thus, we aimed to investigate the relationship between the genetic polymorphism in the TATA box of the CYP2A6 gene (CYP2A6*9), expression levels of CYP2A6 mRNA and coumarin 7-hydroxylase activities in human livers. Levels of CYP2A6 mRNA were quantified by real-time quantitative reverse transcriptase-polymerase chain reaction. The mean expression levels of CYP2A6 mRNA in individuals with CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 58%, 71% and 21% of the individuals genotyped as CYP2A6*1/*1, respectively. The mean in-vitro coumarin 7-hydroxylase activities in subjects carrying CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 41%, 71% and 12%, respectively, compared to those of the subjects judged as wild-type. Vmax values for coumarin 7-hydroxylation in the liver microsomes from human subjects with genotypes of CYP2A6*1/*1, CYP2A6*1/*4, CYP2A6*1/*9 and CYP2A6*4/*9 were 0.58, 0.26, 0.44 and 0.13 nmol/min/nmol total P450, respectively. CYP2A6 protein levels in human liver microsomes with the CYP2A6*4 and the CYP2A6*9 alleles were markedly decreased. These results suggest that the genetic polymorphism in the promoter region of the CYP2A6 gene (CYP2A6*9) reduced the expression levels of CYP2A6 mRNA and protein in human livers, resulting in the decrease of coumarin 7-hydroxylase activities. Individuals judged as CYP2A6*4/*9 were expected to be poor metabolizers, having extremely low activity of CYP2A6.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
A farmacogenética tem por objetivo a identificação de diferenças genéticas entre indivíduos que possam influenciar a resposta à terapêutica farmacológica, melhorando a sua eficácia e segurança. Associado à farmacogenética surge a “medicina personalizada”, ou seja, em oposição à existência de um fármaco que consiga tratar todos os pacientes, o tratamento individualizado parece o caminho mais promissor, uma vez que reduz o risco de reações adversas por toxicidade (segurança), adequa a dose ao indivíduo, evitando excessos ou défices (dose) e evita a metodologia de tentativa erro na escolha do fármaco (eficácia). A farmacogenética é relevante para a resposta individual ao fármaco por duas vias distintas: a farmacocinética e a farmacodinâmica. A variabilidade genética pode afetar a forma como um fármaco pode ser absorvido, ativado, metabolizado ou excretado, podendo conduzir assim a uma variabilidade na resposta. De entre o número infindável de possíveis exemplos, nesta revisão apresentam-se exemplos relacionados com os genes do Citocromo P450, do gene NAT2 e do gene da Colinesterase. As diferenças genéticas entre os indivíduos podem ainda afetar a resposta ao fármaco pela sua farmacodinâmica, ou seja, a resposta específica do alvo ao fármaco. De entre a multiplicidade de alvos de fármacos existentes serão apresentados exemplos do gene da G6PD e do VKORC1. Apesar de alguns dados científicos indicarem benefício para o paciente, ainda está longe de a farmacogenética fazer parte da prática clínica de rotina, talvez porque os custos-benefícios ainda não foram avaliados de forma precisa.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
RESUMO:Em 1994 a acrilamida (AA) foi classificada pela IARC como um provável cancerígeno para o homem. Para além da utilização de AA em numerosas aplicações industriais, a AA está também presente numa grande variedade de alimentos ricos em amido e processados a temperaturas elevadas. Esta exposição através da ingestão de produtos alimentares despoletou elevadas preocupações ao nível do risco para a saúde pública e poderá implicar um risco adicional para o aparecimento de cancro. A glicidamida (GA), o metabolito epóxido formado a partir da oxidação da AA provavelmente através do citocromo P450 2E1, é considerada por vários estudos, o principal responsável pela carcinogenicidade da AA. Actualmente existe uma escassez de resultados relativamente aos mecanismos de genotoxicidade da AA e GA em células de mamífero. Por este motivo, o objectivo deste estudo centra-se na avaliação das consequências genéticas da exposição à AA e GA, recorrendo-se para tal ao uso de células de mamífero como modelo. Tendo como base este objectivo avaliou-se a citotoxicidade da AA e GA, através do ensaio do MTT, e realizaram-se dois testes citogenéticos, o teste das aberrações cromossómicas (CAs) e o teste da troca de cromátides irmãs (SCEs), de modo a avaliar as lesões de DNA induzidas por estes compostos em células de hamster Chinês V79. Os resultados globalmente mostraram que a GA é mais citotóxica e clastogénica do que a AA. No âmbito deste trabalho, foi também efectuada a quantificação de aductos específicos de DNA, nomeadamente N7-(2-carbamoil-2-hidroxietil)guanina (N7-GA-Gua) e N3-(2-carbamoil-2-hidroxietil)adenina (N3-GA-Ade). Os resultados obtidos permitem afirmar que os níveis de N7-GA-Gua e a concentração de GA apresentam uma relação linear dose-resposta. Foi também identificada uma óptima correlação entre os níveis de N7-GA-Gua e a frequência de troca de cromátides irmãs. Adicionalmente, e de forma a compreender os mecanismos de toxicidade da AA, estudaram-se os mecanismos dependentes da modulação do glutationo reduzido (GSH), nomeadamente da butionina sulfoximina (BSO), um inibidor da síntese de GSH, do GSH-monoetil estér (GSH-EE), um composto permeável nas células e que é intra-celularmente hidrolisado a GSH e ainda do GSH adicionado exogenamente ao meio de cultura, em células V79. Os resultados obtidos reforçaram o papel da modulação do GSH nos efeitos de citotoxicidade e clastogenicidade da AA. Para além dos estudos efetuados com células V79, procedeu-se também à determinação da frequência de SCEs, à quantificação de aductos específicos de DNA, bem como ao ensaio do cometa alcalino em amostras de dadores saudáveis expostos à AA e GA. Tanto os resultados obtidos através do ensaio das SCE, como pela quantificação de aductos específicos de DNA, ambos efectuados em linfócitos estimulados, originaram resultados comparáveis aos obtidos anteriormente para as células V79, reforçando a ideia de que a GA é bastante mais genotóxica do que a AA. Por outro lado, os resultados obtidos pelo ensaio do cometa para exposição à AA e GA mostraram que apenas esta última aumenta o nível das lesões de DNA. Outro objectivo deste trabalho, foi a identificação de possíveis associações existentes entre as lesões de DNA, quantificadas através do ensaio das SCEs e do cometa, e biomarcadores de susceptibilidade, tendo em conta os polimorfismos genéticos individuais envolvidos na destoxificação e nas vias de reparação do DNA (BER, NER, HRR e NHEJ) em linfócitos expostos à GA. Tal permitiu identificar associações entre os níveis de lesão de DNA determinados através do ensaio das SCEs, e os polimorfismos genéticos estudados, apontando para uma possível associação entre o GSTP1 (Ile105Val) e GSTA2 (Glu210Ala) e a frequência de SCEs. Por outro lado, os resultados obtidos através do ensaio do cometa sugerem uma associação entre as lesões de DNA e polimorfismos da via BER (MUTYH Gln335His e XRCC1 Gln39Arg) e da via NER (XPC Ala499val e Lys939Gln), considerando os genes isoladamente ou combinados. Estes estudos contribuem para um melhor entendimento da genotoxicidade e carcinogenicidade da AA e GA em células de mamífero, bem como da variabilidade da susceptibilidade individual na destoxificação e reparação de lesões de DNA provocadas pela exposição a estes xenobióticos alimentares. ----------- ABSTRACT:Acrylamide (AA) has been classified as a probable human carcinogen by IARC. Besides being used in numerous industrial applications, AA is also present in a variety of starchy cooked foods. This AA exposure scenario raised concerns about risk in human health and suggests that the oral consumption of AA is an additional risk factor for cancer. A considerable number of findings strongly suggest that the reactive metabolite glycidamide (GA), an epoxide generated presumably by cytochrome P450 2E1, plays a central role in AA carcinogenesis. Until now there are a scarcity of results concerning the mechanisms of genotoxicity of AA and GA in mammalian cells. In view of that, the study described in this thesis aims to unveil the genetic consequences of AA and GA exposure using mammalian cells as a model system. With this aim we evaluated the cytotoxicity of AA and GA using the MTT assay and subsequently performed two cytogenetic end-points: chromosomal aberrations (CAs) and sister chromatid exchanges (SCEs), in order to evaluate DNA damage induced by these compounds in V79 Chinese hamster cell line. The results showed that GA was more cytotoxic and clastogenic than AA. Within the scope of this thesis the quantification of specific DNA adducts were also performed, namely N7-(2-carbamoyl-2-hydroxyethyl)guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl)adenine (N3-GA-Ade). Interestingly, the GA concentration and the levels of N7-GA-Gua presented a linear dose-response relationship. Further, a very good correlation between the levels of N7-GA-Gua and the extent of SCEs were observed. In order to understand the mechanisms of AA-induced toxicity, the modulation of reduced glutathione (GSH)-dependent mechanisms were studied, namely the evaluation of the effect of buthionine sulfoximine (BSO), an effective inhibitor of GSH synthesis, of GSH-monoethyl ester (GSH-EE), a cell permeable compound that is intracellularly hydrolysed to GSH and also of GSH endogenously added to culture medium,z in V79 cell line. The overall results reinforced the role of GSH in the modulation of the cytotoxic and clastogenic effects induced by AA.Complementary to the studies performed in V79 cells, SCEs, specific DNA-adducts and alkaline comet assay in lymphocytes from healthy donors exposed to AA and GA were also evaluated. Both, the frequency of SCE and the quantification of specific GA DNA adducts, produced comparable results with those obtained in V79 cell line, reinforcing the idea that GA is far more genotoxic than AA. Further, the DNA damaging potential of AA and GA in whole blood leukocytes evaluated by the alkaline comet assay, showed that GA, but not AA, increases DNA damage. Additionally, this study aimed to identify associations between DNA damage and biomarkers of susceptibility, concerning individual genetic polymorphisms involved in detoxification and DNA repair pathways (BER, NER, HRR and NHEJ) on the GA-induced genotoxicity assessed by the SCE assay and by the alkaline comet assay. The extent of DNA damage determined by the levels of SCEs induced by GA seems to be modulated by GSTP1 (Ile105Val) and GSTA2 (Glu210Ala) genotypes. Moreover, the results obtained from the comet assay suggested associations between DNA damage and polymorphisms of BER (MUTYH Gln335His and XRCC1 Gln399Arg) and NER (XPC Ala499Val and Lys939Gln) genes, either alone or in combination. The overall results from this study contribute to a better understanding of the genotoxicity and carcinogenicity of AA and GA in mammalian cells, as well as the knowledge about the variability in individual susceptibility involved in detoxification and repair of DNA damage due to these dietary xenobiotics.