978 resultados para Crystallization Behavior
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. on the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110 degrees C for 1 h with 5% v/v triethylamine.
Resumo:
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Electron spin resonance (ESR) experiments give extremely important information concerning spin arrangements in conducting polymers. This is evidenced by the behavior of the ESR lines as a function of temperature and microwave power. Our ESR data of pressed pellets of ClO- 4 doped poly(3-methylthiophene) (P3MT) synthesized at 25 °C show the predominance of polarons. Instead, the sample prepared at 5 °C shows the predominance of bipolarons. Besides, for both types of samples, crystallization, observed from the ESR data, has shown a rearrangement of spin species.
Resumo:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.
Resumo:
In recent years, environmental concerns and the expected shortage in the fossil reserves have increased further development of biomaterials. Among them, poly(lactide) PLA possess some potential properties such as good ability process, excellent tensile strength and stiffness equivalent to some commercial petroleum-based polymers (PP, PS, PET, etc.). This biobased polymer is also biodegradable and biocompatible However, one great disadvantage of commercial PLA is slow crystallization rate, which restricts its use in many fields. Using of nanofillers is viewed as an efficient strategy to overcome this problem. In this thesis, the effect of bionanofillers in neat PLA and in blends of poly (L-lactide)(PLA)/poly(ε-Caprolactone) (PCL) has been investigated. The used nanofillers are: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-b-ε-caprolactone) grafted on cellulose nanowhiskers and neat cellulose nanowhiskers (CNW). The grafting reaction of poly(L-lactide-co-caprolactone) and poly (L-lactide-b-caprolactone) on the nanocellulose has been performed by the grafting from technique. In this way the polymerization reaction it is directly initiated on the substrate surface. The condition of the reaction were chosen after a temperature and solvent screening. By non-isothermal an isothermal DSC analysis the effect of bionanofillers on PLA and 80/20 PLA/PCL was evaluated. Non-isothermal DSC scans show a nucleating effect of the bionanofillers on PLA. This effect is detectable during PLA crystallization from the glassy state. Cold crystallization temperature is reduced upon the addition of the poly(L-lactide-b-caprolactone) grafted on cellulose nanowhiskers that is most performing bionanofiller in acting as a nucleating agent. On the other hand, DSC isothermal analysis on the overall crystallization rate indicate that cellulose nanowhiskers are best nucleating agents during isothermal crystallization from the melt state. In conclusion, nanofillers have different behavior depending on the processing conditions. However, the efficiency of our nanofillers as nucleating agent was clearly demonstrated in both isothermal as in non-isothermal condition.
Resumo:
Poly(lactide) is one of the best candidate to replace conventional petroleum-based polymers, since it is biobased, biocompatible and biodegradable. However, commercial PLA materials typically have low crystallization rate resulting in long processing time and low production efficiency. In this work the effects of two nanofillers MMT30B and MMT30B-g-P(LA-co-CL) on the crystallization rate of neat PLA and PLA/PCL blend were investigated. MMT30B-g-P(LA-co-CL) was synthetized by in situ grafting reaction. The synthesis was carried in xylene at 140°C, upon the results of a screening. The grafted copolymers were evaluated by 1H-NMR ,ATR–IR and TGA. Solvent casted films were obtained by mixing MMT30B-g-P(LA-co-CL) at 5% (w/w) with neat PLA and PLA/PCL blend, comparing the properties with the corresponding blends with and without a 5% of (w/w) unmodified clay. SEM images on PLA based blends shows that MMT30B is aggregated into larger particles compared to MMT30B-g-P(LLA-co-CL). This behavior is correlated to the better exfoliation of MMT30B-g-P(LA-co-CL) clay layers. SEM images on PLA/PCL based blends exhibit the typical sea-island morphology, characteristic of immiscible blends. PLA is the matrix while PCL is finely dispersed in droplets. MMT30B does not reduce PCL droplets size, while MMT30B-g-P(LA-co-CL) reduces the size of PCL droplets. This means that MMT30B-g-P(LA-co-CL) can migrate to the PLA-PCL interface, acting as a compatibilizer. Non-isothermal DSC cooling scans show a fractionated crystallization of the PCL phase in PLA/PCL/MMT30B-g-P(LA-co-CL), confirming the compatibilizer effect of MMT30B-g-P(LA-co-CL). At the same timeMMT30B-g-P(LA-co-CL) can better nucleate the PLA phase, both in neat PLA and PLA/PCL blend, promoting the crystallization during the heating scans. In isothermal condition, both the nanofillers increase the crystallization rate of PLA phase in neat PLA, while in PLA/PCL blends the effect is covered by the nucleating effect of PCL.
Resumo:
TbxFe1−x thin films deposited by sputtering on Mo were investigated structurally and magnetically. The microstructure consists of TbFe2 nanoparticles embedded in an amorphous matrix, and the Tb content can be correlated with an increase in the volume of these nanoparticles. Similar microstructure and behavior were found when TbFe2 was deposited on glass and on a Pt buffer layer. Nevertheless, thermal treatments promote a different effect, depending on the mechanical stiffness of the buffer layer. The layers deposited on Mo, a rigid material, show crystalline TbFe2 together with α-Tb phase upon thermal treatment. In contrast, TbFe2 does not crystallize properly on Pt, a material with a lower stiffness than Mo. Intermediate results were observed on the film deposited on glass. Experimental results show the impact of the buffer stiffness on the crystallization process. Moreover, the formation of α-Tb appears to be fundamental to crystallized TbFe2 on layers deposited on rigid buffers
Resumo:
Several human genetic cataracts have been linked recently to point mutations in the γD crystallin gene. Here we provide a molecular basis for lens opacity in two genetic cataracts and suggest that the opacity occurs because of the spontaneous crystallization of the mutant proteins. Such crystallization of endogenous proteins leading to pathology is an unusual event. Measurements of the solubility curves of crystals of the Arg-58 to His and Arg-36 to Ser mutants of γD crystallin show that the mutations dramatically lower the solubility of the protein. Furthermore, the crystal nucleation rate of the mutants is enhanced considerably relative to that of the wild-type protein. It should be noted that, although there is a marked difference in phase behavior, there is no significant difference in protein conformation among the three proteins.
Resumo:
Polybenzoxazine (PBA-a)/poly(epsilon-caprolactone) (PCL) blends were prepared by an in situ curing reaction of benzoxazine (BA-a) in the presence of PCL. Before curing, the benzoxazine (BA-a)/PCL blends are miscible, which was evidenced by the behaviors of single and composition-dependant glass transition temperature and equilibrium melting point depression. However, the phase separation induced by polymerization was observed after curing at elevated temperature. It was expected that after curing, the PBA-a/PCL blends would be miscible since the phenolic hydroxyls in the PBA-a molecular backbone have the potential to form inter- molecular hydrogen-bonding interactions with the carbonyls of PCL and thus would fulfil the miscibility of the blends. The resulting morphology of the blends prompted an investigation of the status of association between PBA-a and PCL under the curing conditions. Although Fourier-transform infrared spectroscopy (FT-IR) showed that there were intermolecular hydrogen-bonding interactions between PBA-a and PCL at room temperature, especially for the PCL-rich blends, the results of variable temperature FT-IR spectroscopy by the model compound indicate that the phenolic hydroxyl groups could not form efficient intermolecular hydrogen-bonding interactions at elevated temperatures, i.e., the phenolic hydroxyl groups existed mainly in the non-associated form in the system during curing. The results are valuable to understand the effect of curing temperature on the resulting morphology of the thermosetting blends. SEM micrograph of the dichloromethane-etched fracture surface of a 90:10 PBA-a PCL blend showing a heterogeneous morphology.