983 resultados para Complementary Molecular-components
Resumo:
Pós-graduação em Patologia - FMB
Resumo:
Fluorene-based systems have shown great potential as components in organic electronics and optoelectronics (organic photovoltaics, OPVs, organic light emitting diodes, OLEDs, and organic transistors, OTFTs). These systems have drawn attention primarily because they exhibit strong blue emission associated with relatively good thermal stability. It is well-known that the electronic properties of polymers are directly related to the molecular conformations and chain packing of polymers. Here, we used three oligofluorenes (trimer, pentamer, and heptamer) as model systems to theoretically investigate the conformational properties of fluorene molecules, starting with the identification of preferred conformations. The hybrid exchange correlation functional, OPBE, and ZINDO/S-CI showed that each oligomer exhibits a tendency to adopt a specific chain arrangement, which could be distinguished by comparing their UV/vis electronic absorption and C-13 NMR spectra. This feature was used to identify the preferred conformation of the oligomer chains in chloroform-cast films by comparing experimental and theoretical UV/vis and C-13 NMR spectra. Moreover, the oligomer chain packing and dynamics in the films were studied by DSC and several solid state NMR techniques, which indicated that the phase behavior of the films may be influenced by the tendency that each oligomeric chain has to adopt a given conformation.
Resumo:
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from L-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4' sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019331, 1245-1262, 2012.
Resumo:
Background: Sugarcane is an important crop worldwide for sugar production and increasingly, as a renewable energy source. Modern cultivars have polyploid, large complex genomes, with highly unequal contributions from ancestral genomes. Long Terminal Repeat retrotransposons (LTR-RTs) are the single largest components of most plant genomes and can substantially impact the genome in many ways. It is therefore crucial to understand their contribution to the genome and transcriptome, however a detailed study of LTR-RTs in sugarcane has not been previously carried out. Results: Sixty complete LTR-RT elements were classified into 35 families within four Copia and three Gypsy lineages. Structurally, within lineages elements were similar, between lineages there were large size differences. FISH analysis resulted in the expected pattern of Gypsy/heterochromatin, Copia/euchromatin, but in two lineages there was localized clustering on some chromosomes. Analysis of related ESTs and RT-PCR showed transcriptional variation between tissues and families. Four distinct patterns were observed in sRNA mapping, the most unusual of which was that of Ale1, with very large numbers of 24nt sRNAs in the coding region. The results presented support the conclusion that distinct small RNA-regulated pathways in sugarcane target the lineages of LTR-RT elements. Conclusions: Individual LTR-RT sugarcane families have distinct structures, and transcriptional and regulatory signatures. Our results indicate that in sugarcane individual LTR-RT families have distinct behaviors and can potentially impact the genome in diverse ways. For instance, these transposable elements may affect nearby genes by generating a diverse set of small RNA's that trigger gene silencing mechanisms. There is also some evidence that ancestral genomes contribute significantly different element numbers from particular LTR-RT lineages to the modern sugarcane cultivar genome.
Resumo:
Rayleigh optical activities of small hydrogen-bonded methanol clusters containing two to five molecules are reported. For the methanol trimer, tetramer, and pentamer both cyclic and linear structures are considered. After the geometry optimizations, the dipole moments and the dipole polarizabilities (mean, interaction, and anisotropic components) are calculated using HF, MP2 and DFT (B3LYP, B3P86 and BH&HLYP) with aug-cc-pVDZ extended basis set. The polarizabilities are used to analyse the depolarization ratios and the Rayleigh scattering activities. The variations in the activity and in the depolarization for Rayleigh scattered radiation with the increase in the cluster size for both cyclic and linear structures are analysed.
Resumo:
A comparative proteomic approach was performed to identify differentially expressed proteins in plastids at three stages of tomato (Solanum lycopersicum) fruit ripening (mature-green, breaker, red). Stringent curation and processing of the data from three independent replicates identified 1,932 proteins among which 1,529 were quantified by spectral counting. The quantification procedures have been subsequently validated by immunoblot analysis of six proteins representative of distinct metabolic or regulatory pathways. Among the main features of the chloroplast-to-chromoplast transition revealed by the study, chromoplastogenesis appears to be associated with major metabolic shifts: (1) strong decrease in abundance of proteins of light reactions (photosynthesis, Calvin cycle, photorespiration) and carbohydrate metabolism (starch synthesis/degradation), mostly between breaker and red stages and (2) increase in terpenoid biosynthesis (including carotenoids) and stress-response proteins (ascorbate-glutathione cycle, abiotic stress, redox, heat shock). These metabolic shifts are preceded by the accumulation of plastid-encoded acetyl Coenzyme A carboxylase D proteins accounting for the generation of a storage matrix that will accumulate carotenoids. Of particular note is the high abundance of proteins involved in providing energy and in metabolites import. Structural differentiation of the chromoplast is characterized by a sharp and continuous decrease of thylakoid proteins whereas envelope and stroma proteins remain remarkably stable. This is coincident with the disruption of the machinery for thylakoids and photosystem biogenesis (vesicular trafficking, provision of material for thylakoid biosynthesis, photosystems assembly) and the loss of the plastid division machinery. Altogether, the data provide new insights on the chromoplast differentiation process while enriching our knowledge of the plant plastid proteome.
Resumo:
The identification of northern and southern components in different vertebrate species led researchers to accept a two-component hypothesis for the Brazilian Atlantic forest (BAF). Nevertheless, neither a formal proposal nor a meta-analysis to confirm this coincidence was ever made. Our main objective here was therefore to systematically test in how many vertebrate components the BAF could be divided by analysing existing empirical data. We used two approaches: (1) mapping and comparing the proposed areas of vertebrate endemism in the BAF and (2) analysing studies mentioning spatial subdivisions in distinct forest-dependent vertebrates within the biome, by the use of panbiogeography. The four large-scale endemism area components together with the six small-scale panbiogeographical ones allowed the definition of three BAF greater regions, subdivided into nine vertebrate components, latitudinally and longitudinally organized. Empirical time estimates of the diversification events within the BAF were also reviewed. Diversification of these vertebrates occurred not only in the Pleistocene but also throughout the Miocene. Our results confirm the BAF's complex history, both in space and time. We propose that future research should be small-scale and focused in the vertebrate components identified herein. Given the BAF's heterogeneity, studying via sections will be much more useful in identifying the BAF's historical biogeography. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107, 39-55.
Resumo:
The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)(2)SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6HSO7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: Balancing the subject composition of case and control groups to create homogenous ancestries between each group is essential for medical association studies. Methods: We explored the applicability of single-tube 34-plex ancestry informative markers (AIM) single nucleotide polymorphisms (SNPs) to estimate the African Component of Ancestry (ACA) to design a future case-control association study of a Brazilian urban sample. Results: One hundred eighty individuals (107 case group; 73 control group) self-described as white, brown-intermediate or black were selected. The proportions of the relative contribution of a variable number of ancestral population components were similar between case and control groups. Moreover, the case and control groups demonstrated similar distributions for ACA <0.25 and >0.50 categories. Notably a high number of outlier values (23 samples) were observed among individuals with ACA <0.25. These individuals presented a high probability of Native American and East Asian ancestral components; however, no individuals originally giving these self-described ancestries were observed in this study. Conclusions: The strategy proposed for the assessment of ancestry and adjustment of case and control groups for an association study is an important step for the proper construction of the study, particularly when subjects are taken from a complex urban population. This can be achieved using a straight forward multiplexed AIM-SNPs assay of highly discriminatory ancestry markers.
Resumo:
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.
Resumo:
The control of the properties of materials at the molecular level is pursued for many applications, especially those associated with nanostructures. In this paper, we show that the coordination compound [Ni(dmit)(2)], where (dmit) is the 1,3-dithiole-2-thione-4,5-dithiolate ligand, can induce doping of poly(2-methoxyaniline) (POMA) in molecularly ordered Langmuir and Langmuir-Blodgett (LB) films. Doping was associated with interactions between the components and the compression of the Langmuir film at the air-water interface, according to polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) data. Taking these results together with in situ UV-Vis absorption measurements, we could identify the molecular groups involved in the interaction, including the way they were reoriented upon film compression. The Langmuir films were sufficiently stable to be transferred as Y-type LB films, while the hybrid POMA/[Ni(dmit)(2)] films remain doped in the solid state. As expected, the molecular charges affected the film morphology, as observed from combined atomic and electric force microscopy measurements. In summary, with adequate spectroscopy and microscopy tools we characterized molecular-level interactions, which may allow one to design molecular electronic devices with controlled electrical properties.
Resumo:
Peanut samples were irradiated (0.0, 5.2, 7.2 or 10.0 kGy), stored for a year (room temperature) and examined every three months. Mycotoxic fungi (MF) were detected in non-irradiated blanched peanuts. A dose of 5.2 kGy was found suitable to prevent MF growth in blanched samples. No MF was detected in in-shell peanuts, with or without irradiation. The colors of the control in-shell and blanched samples were, respectively, 44.72 and 60.21 (L *); 25.20 and 20.38 (Chroma); 53.05 and 86.46 (degrees Hue). The water activities (Aw) were 0.673 and 0.425. The corresponding fatty acids were 13.33% and 12.14% (C16:0), 44.94% and 44.92% (C18:1,omega 9) and 37.10% and 37.63% (C18: 2,omega 6). The total phenolics (TP) were 4.62 and 2.52 mg GAE/g, with antioxidant activities (AA) of 16.97 and 10.36 mu mol TEAC/g. Storage time negatively correlated with Aw (in-shell peanuts) or L *, linoleic acid, TP and AA (in-shell and blanched peanuts) but positively correlated with Aw (blanched peanuts), and with oleic acid (in-shell and blanched peanuts). Irradiation positively correlated with antioxidant activity (blanched peanuts). No correlation was found between irradiation and AA (in-shell samples) or fatty acids and TP (in-shell and blanched peanuts). Irradiation protected against MF and retained both the polyunsaturated fatty acids and polyphenols in the samples.
Resumo:
Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.
Resumo:
In der vorliegenden Arbeit wurde die Morphologie von zweiphasigen Polymermischungen unter Scherung in situ mit Hilfe einer Kombination aus optischer Scherzelle, Durchlichtmikroskop und computergestützten CCD-Kamera untersucht. Als Modellblends dienten die unverträglichen, bei Raumtemperatur flüssigen Polymersysteme Polyisobutylen (PIB)/Polydimethylsiloxan (PDMS) (I) und Poly(dimethyl-co-methylphenyl)siloxan/PDMS (II). Alle Komponenten verhalten sich bei den verwendeten Scherraten newtonisch.Eine der wichtigsten Einflussgrößen für die Blendmorphologie ist die Grenzflächenspannung gamma 12. Sie wurde für I und II mit Hilfe der Methode der Tropfenrelaxation (dynamisch) als Funktion der Zeit bestimmt. Diese Methode erlaubt die Messung von gamma 12 für Tropfen der Phase A in B sowie von Tropfen B in A. Bei der Methode des hängenden Tropfens (statisch) muss der Tropfen aus der Phase mit der höheren Dichte bestehen. Wo der Vergleich der beiden Methoden möglich ist, stimmen die Ergebnisse für beide Systeme sehr gut überein. Bei II sind die aus der Tropfenrelaxation erhaltenen gamma 12-Werte der beiden komplementären Zusammensetzungen im Rahmen des Fehlers gleich, bei I zeigt ein PIB-Tropfen in PDMS einen um 40 % niedrigeren Wert als ein PDMS-Tropfen in PIB, dies wird auf die Diffusion von kurzkettigen Anteilen des PDMS in die Grenzschicht zurückgeführt. Die Grenzflächenspannung hängt also unter Umständen auch bei binären Systemen deutlich von der Zusammensetzung ab.Für II wurde die Blendmorphologie über den gesamten Zusammensetzungsbereich untersucht. Die häufig beobachteten cokontinuierlichen Strukturen treten bei keiner Zusammensetzung auf. Die Phaseninversion erkennt man in einer sprunghaften Änderung der Tropfengröße zwischen phiPDMS <= 0,400 und 0,500; zudem lässt sich die Zeitabhängigkeit der Radien durch Auftragung gegen das Produkt aus der Deformation und dem Quadrat des Volumenbruchs der Tropfenphase für 0 <= phiPDMS <= 0,400 sowie 0,500 <= phiPDMS <= 1 normieren. Für I und II wurde die Morphologieentwicklung bei 25 °C nach Vorscherung bei 100 bzw. 50 s-1 und anschließendem Sprung der Scherrate auf deutlich niedrigere Werte als Funktion der Zeit verfolgt. Hierbei erhält man bei genügend langer Messdauer (mindestens 200 000-300 000 Schereinheiten) konstante Tropfengrößen. Zum einen handelt es sich dabei um pseudo-stationäre Werte, die nur durch Koaleszenz bestimmt sind, zum anderen um echte stationäre Radien, die durch gleichzeitig ablaufende Koaleszenz und Zerteilung entstehen. Für I liegen die stationären Mittelwerte auf der Zerteilungskurve, für II hingegen auf der Koaleszenzkurve.Der Einfluss eines grenzflächenwirksamen Additivs wurde anhand von I durch Zugabe des Blockcopolymer PIB-b-PDMS zu PIB untersucht. Der Vergleich des zeitlichen Verlaufs von gamma 12 mit der Morphologieentwicklung zeigt, dass das Additiv eine Stabilisierung der feinen Tropfen/Matrix-Struktur des Blends durch Hinderung der Koaleszenz und nicht durch Reduktion der Grenzflächenspannung bewirkt.
Resumo:
Supramolecular chemistry is a multidisciplinary field which impinges on other disciplines, focusing on the systems made up of a discrete number of assembled molecular subunits. The forces responsible for the spatial organization are intermolecular reversible interactions. The supramolecular architectures I was interested in are Rotaxanes, mechanically-interlocked architectures consisting of a "dumbbell shaped molecule", threaded through a "macrocycle" where the stoppers at the end of the dumbbell prevent disassociation of components and catenanes, two or more interlocked macrocycles which cannot be separated without breaking the covalent bonds. The aim is to introduce one or more paramagnetic units to use the ESR spectroscopy to investigate complexation properties of these systems cause this technique works in the same time scale of supramolecular assemblies. Chapter 1 underlines the main concepts upon which supramolecular chemistry is based, clarifying the nature of supramolecular interactions and the principles of host-guest chemistry. In chapter 2 it is pointed out the use of ESR spectroscopy to investigate the properties of organic non-covalent assemblies in liquid solution by spin labels and spin probes. The chapter 3 deals with the synthesis of a new class of p-electron-deficient tetracationic cyclophane ring, carrying one or two paramagnetic side-arms based on 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) moiety. In the chapter 4, the Huisgen 1,3-dipolar cycloaddition is exploited to synthesize rotaxanes having paramagnetic cyclodextrins as wheels. In the chapter 5, the catalysis of Huisgen’s cycloaddition by CB[6] is exploited to synthesize paramagnetic CB[6]-based [3]-rotaxanes. In the chapter 6 I reported the first preliminary studies of Actinoid series as a new class of templates in catenanes’ synthesis. Being f-block elements, so having the property of expanding the valence state, they constitute promising candidates as chemical templates offering the possibility to create a complex with coordination number beyond 6.