961 resultados para Clinical-prediction Rules
Resumo:
Objective: To establish a prediction model of the degree of disability in adults with Spinal CordInjury (SCI ) based on the use of the WHO-DAS II . Methods: The disability degree was correlatedwith three variable groups: clinical, sociodemographic and those related with rehabilitation services.A model of multiple linear regression was built to predict disability. 45 people with sci exhibitingdiverse etiology, neurological level and completeness participated. Patients were older than 18 andthey had more than a six-month post-injury. The WHO-DAS II and the ASIA impairment scale(AIS ) were used. Results: Variables that evidenced a significant relationship with disability were thefollowing: occupational situation, type of affiliation to the public health care system, injury evolutiontime, neurological level, partial preservation zone, ais motor and sensory scores and number ofclinical complications during the last year. Complications significantly associated to disability werejoint pain, urinary infections, intestinal problems and autonomic disreflexia. None of the variablesrelated to rehabilitation services showed significant association with disability. The disability degreeexhibited significant differences in favor of the groups that received the following services: assistivedevices supply and vocational, job or educational counseling. Conclusions: The best predictiondisability model in adults with sci with more than six months post-injury was built with variablesof injury evolution time, AIS sensory score and injury-related unemployment.
Resumo:
The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.
Resumo:
The aim of the study was to establish and verify a predictive vegetation model for plant community distribution in the alti-Mediterranean zone of the Lefka Ori massif, western Crete. Based on previous work three variables were identified as significant determinants of plant community distribution, namely altitude, slope angle and geomorphic landform. The response of four community types against these variables was tested using classification trees analysis in order to model community type occurrence. V-fold cross-validation plots were used to determine the length of the best fitting tree. The final 9node tree selected, classified correctly 92.5% of the samples. The results were used to provide decision rules for the construction of a spatial model for each community type. The model was implemented within a Geographical Information System (GIS) to predict the distribution of each community type in the study site. The evaluation of the model in the field using an error matrix gave an overall accuracy of 71%. The user's accuracy was higher for the Crepis-Cirsium (100%) and Telephium-Herniaria community type (66.7%) and relatively lower for the Peucedanum-Alyssum and Dianthus-Lomelosia community types (63.2% and 62.5%, respectively). Misclassification and field validation points to the need for improved geomorphological mapping and suggests the presence of transitional communities between existing community types.
Resumo:
In the present study we measured maternal plasma concentrations of two placental neurohormones, corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP), in 58 at-risk pregnant women consecutively enrolled between 28 and 29 wk of pregnancy to evaluate whether their evaluation may predict third trimester-onset preeclampsia ( PE). The statistical significance was assessed by t test. The cut-off points for defining altered CRF and CRF-BP levels for prediction of PE were chosen by receiving operator characteristics curve analysis, and the probability of developing PE was calculated for several combinations of hormone testing results. CRF and CRF-BP levels were significantly ( both P < 0.0001) higher and lower, respectively, in the patients (n = 20) who later developed PE than in those who did not present PE at follow-up. CRF at the cut-off 425.95 pmol/liter achieved a sensitivity of 94.8% and a specificity of 96.9%, whereas CRF-BP at the cut-off 125.8 nmol/liter combined a sensitivity of 92.5% and a specificity of 82.5% as single markers for prediction of PE. The probability of PE was 34.5% in the whole study population, 93.75% when both CRF and CRF-BP levels were changed, and 0% if both hormone markers were unaltered. The measurement of CRF and CRF-BP levels may add significant prognostic information for predicting PE in at-risk pregnant women.
Resumo:
OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Resumo:
Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP) as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM) is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM) is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the behavior will occur. To overcome this weakness, a semiotic approach to generation of clinical pathway is introduced. The CP generated from SAM together with norms will enrich the knowledge representation of the domain through ontology modeling, which allows the recognition of human responsibilities and obligations and more importantly, the ultimate power of decision making in exceptional circumstances.
Resumo:
Whole-genome sequencing (WGS) could potentially provide a single platform for extracting all the information required to predict an organism’s phenotype. However, its ability to provide accurate predictions has not yet been demonstrated in large independent studies of specific organisms. In this study, we aimed to develop a genotypic prediction method for antimicrobial susceptibilities. The whole genomes of 501 unrelated Staphylococcus aureus isolates were sequenced, and the assembled genomes were interrogated using BLASTn for a panel of known resistance determinants (chromosomal mutations and genes carried on plasmids). Results were compared with phenotypic susceptibility testing for 12 commonly used antimicrobial agents (penicillin, methicillin, erythromycin, clindamycin, tetracycline, ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin) performed by the routine clinical laboratory. We investigated discrepancies by repeat susceptibility testing and manual inspection of the sequences and used this information to optimize the resistance determinant panel and BLASTn algorithm. We then tested performance of the optimized tool in an independent validation set of 491 unrelated isolates, with phenotypic results obtained in duplicate by automated broth dilution (BD Phoenix) and disc diffusion. In the validation set, the overall sensitivity and specificity of the genomic prediction method were 0.97 (95% confidence interval [95% CI], 0.95 to 0.98) and 0.99 (95% CI, 0.99 to 1), respectively, compared to standard susceptibility testing methods. The very major error rate was 0.5%, and the major error rate was 0.7%. WGS was as sensitive and specific as routine antimicrobial susceptibility testing methods. WGS is a promising alternative to culture methods for resistance prediction in S. aureus and ultimately other major bacterial pathogens.
Resumo:
This paper, the second in a series of three papers concerned with the statistical aspects of interim analyses in clinical trials, is concerned with stopping rules in phase II clinical trials. Phase II trials are generally small-scale studies, and may include one or more experimental treatments with or without a control. A common feature is that the results primarily determine the course of further clinical evaluation of a treatment rather than providing definitive evidence of treatment efficacy. This means that there is more flexibility available in the design and analysis of such studies than in phase III trials. This has led to a range of different approaches being taken to the statistical design of stopping rules for such trials. This paper briefly describes and compares the different approaches. In most cases the stopping rules can be described and implemented easily without knowledge of the detailed statistical and computational methods used to obtain the rules.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The genome-wide identification of both morbid genes, i.e., those genes whose mutations cause hereditary human diseases, and druggable genes, i.e., genes coding for proteins whose modulation by small molecules elicits phenotypic effects, requires experimental approaches that are time-consuming and laborious. Thus, a computational approach which could accurately predict such genes on a genome-wide scale would be invaluable for accelerating the pace of discovery of causal relationships between genes and diseases as well as the determination of druggability of gene products.Results: In this paper we propose a machine learning-based computational approach to predict morbid and druggable genes on a genome-wide scale. For this purpose, we constructed a decision tree-based meta-classifier and trained it on datasets containing, for each morbid and druggable gene, network topological features, tissue expression profile and subcellular localization data as learning attributes. This meta-classifier correctly recovered 65% of known morbid genes with a precision of 66% and correctly recovered 78% of known druggable genes with a precision of 75%. It was than used to assign morbidity and druggability scores to genes not known to be morbid and druggable and we showed a good match between these scores and literature data. Finally, we generated decision trees by training the J48 algorithm on the morbidity and druggability datasets to discover cellular rules for morbidity and druggability and, among the rules, we found that the number of regulating transcription factors and plasma membrane localization are the most important factors to morbidity and druggability, respectively.Conclusions: We were able to demonstrate that network topological features along with tissue expression profile and subcellular localization can reliably predict human morbid and druggable genes on a genome-wide scale. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing morbidity and druggability.
Resumo:
To present a critical review of publications reporting on the rationale and clinical implications of the use of biomarkers for the early diagnosis of Alzheimer's disease (AD). Methods: We conducted a systematic search of the PubMed and Web of Science electronic databases, limited to articles published in English between 1999 and 2012, and based on the following terms: mild cognitive impairment, Alzheimer's disease OR dementia, biomarkers. We retrieved 1,130 articles, of which 175 were reviews. Overall, 955 original articles were eligible. Results: The following points were considered relevant for the present review: a) rationale for biomarkers research in AD and mild cognitive impairment (MCI); b) usefulness of distinct biomarkers for the diagnosis and prediction of AD; c) the role of multimodality biomarkers for the diagnosis and prediction of AD; d) the role of biomarkers in clinical trials of patients with AD and MCI; and e) current limitations to the widespread use of biomarkers in research and clinical settings. Conclusion: Different biomarkers are useful for the early diagnosis and prediction of AD in at-risk subjects. Nonetheless, important methodological limitations need to be overcome for widespread use of biomarkers in research and clinical settings. © 2013 Associação Brasileira de Psiquiatria.
Resumo:
Objective: To ascertain incidence and predictors of new permanent pacemaker (PPM) following transcatheter aortic valve implantation (TAVI) with the self-expanding aortic bioprosthesis. Background: TAVI with the Medtronic Corevalve (MCV) Revalving System (Medtronic, Minneapolis, MN) has been associated with important post-procedural conduction abnormalities and frequent need for PPM. Methods: Overall, 73 consecutive patients with severe symptomatic AS underwent TAVI with the MCV at two institutions; 10 patients with previous pacemaker and 3 patients with previous aortic valve replacement were excluded for this analysis. Clinical, echocardiographic, and procedural data were collected prospectively in a dedicated database. A standard 12-lead ECG was recorded in all patients at baseline, after the procedure and predischarge. Decision to implant PPM was taken according to current guidelines. Logistic multivariable modeling was applied to identify independent predictors of PPM at discharge. Results: Patients exhibited high-risk features as evidenced by advanced age (mean = 82.1 +/- 6.2 years) and high surgical scores (logistic EuroSCORE 23.0 +/- 12.8%, STS score 9.4 +/- 6.9%). The incidence of new PPM was 28.3%. Interventricular septum thickness and logistic Euroscore were the baseline independent predictors of PPM. When procedural variables were included, the independent predictors of PPM were interventricular septum thickness (OR 0.52; 95% CI 0.320.85) and the distance between noncoronary cusp and the distal edge of the prosthesis (OR 1.37; 95% CI 1.031.83). Conclusions: Conduction abnormalities are frequently observed after TAVI with self-expandable bioprosthesis and definitive pacing is required in about a third of the patients, with a clear association with depth of implant and small interventricular septum thickness. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods: Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results: We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions: The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.
Resumo:
The sera of a retrospective cohort (n = 41) composed of children with well characterized cow's milk allergy collected from multiple visits were analyzed using a protein microarray system measuring four classes of immunoglobulins. The frequency of the visits, age and gender distribution reflected real situation faced by the clinicians at a pediatric reference center for food allergy in 530 Paulo, Brazil. The profiling array results have shown that total IgG and IgA share similar specificity whilst IgM and in particular IgE are distantly related. The correlation of specificity of IgE and IgA is variable amongst the patients and this relationship cannot be used to predict atopy or the onset of tolerance to milk. The array profiling technique has corroborated the clinical selection criteria for this cohort albeit it clearly suggested that 4 out of the 41 patients might have allergies other than milk origin. There was also a good correlation between the array data and ImmunoCAP results, casein in particular. By using qualitative and quantitative multivariate analysis routines it was possible to produce validated statistical models to predict with reasonable accuracy the onset of tolerance to milk proteins. If expanded to larger study groups, the array profiling in combination with the multivariate techniques show potential to improve the prognostic of milk allergic patients. (C) 2012 Elsevier B.V. All rights reserved.