848 resultados para Climate impacts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The quantification of uncertainty is an increasingly popular topic, with clear importance for climate change policy. However, uncertainty assessments are open to a range of interpretations, each of which may lead to a different policy recommendation. In the EQUIP project researchers from the UK climate modelling, statistical modelling, and impacts communities worked together on ‘end-to-end’ uncertainty assessments of climate change and its impacts. Here, we use an experiment in peer review amongst project members to assess variation in the assessment of uncertainties between EQUIP researchers. We find overall agreement on key sources of uncertainty but a large variation in the assessment of the methods used for uncertainty assessment. Results show that communication aimed at specialists makes the methods used harder to assess. There is also evidence of individual bias, which is partially attributable to disciplinary backgrounds. However, varying views on the methods used to quantify uncertainty did not preclude consensus on the consequential results produced using those methods. Based on our analysis, we make recommendations for developing and presenting statements on climate and its impacts. These include the use of a common uncertainty reporting format in order to make assumptions clear; presentation of results in terms of processes and trade-offs rather than only numerical ranges; and reporting multiple assessments of uncertainty in order to elucidate a more complete picture of impacts and their uncertainties. This in turn implies research should be done by teams of people with a range of backgrounds and time for interaction and discussion, with fewer but more comprehensive outputs in which the range of opinions is recorded.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on the geological evidence that the northern Tibetan Plateau (NTP) had an uplift of a finite magnitude since the Miocene and the major Asian inland deserts formed in the early Pliocene, a regional climate model (RegCM4.1) with a horizontal resolution of 50 km was used to explore the effects of the NTP uplift and the related aridification of inland Asia on regional climate. We designed three numerical experiments including the control experiment representing the present-day condition, the high-mountain experiment representing the early Pliocene condition with uplifted NTP but absence of the Asian inland deserts, and the low-mountain experiment representing the mid-Miocene condition with reduced topography in the NTP (by as much as 2400 m) and also absence of the deserts. Our simulation results indicated that the NTP uplift caused significant reductions in annual precipitation in a broad region of inland Asia north of the Tibetan Plateau (TP) mainly due to the enhanced rain shadow effect of the mountains and changes in the regional circulations. However, four mountainous regions located in the uplift showed significant increases in precipitation, stretching from the Pamir Plateau in the west to the Qilian Mountains in the east. These mountainous areas also experienced different changes in the rainfall seasonality with the greatest increases occurring during the respective rainy seasons, predominantly resulted from the enhanced orographically forced upwind ascents. The appearance of the major deserts in the inland Asia further reduced precipitation in the region and led to increased dust emission and deposition fluxes, while the spatial patterns of dust deposition were also changed, not only in the regions of uplift-impacted topography, but also in the downwind regions. One major contribution from this study is the comparison of the simulation results with 11 existing geological records representing the moisture conditions from Miocene to Pliocene. The comparisons revealed good matches between the simulation results and the published geological records. Therefore, we conclude that the NTP uplift and the related formation of the major deserts played a controlling role in the evolution of regional climatic conditions in a broad region in inland Asia since the Miocene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper introduces the special issue of Climatic Change on the QUEST-GSI project, a global-scale multi-sectoral assessment of the impacts of climate change. The project used multiple climate models to characterise plausible climate futures with consistent baseline climate and socio-economic data and consistent assumptions, together with a suite of global-scale sectoral impacts models. It estimated impacts across sectors under specific SRES emissions scenarios, and also constructed functions relating impact to change in global mean surface temperature. This paper summarises the objectives of the project and its overall methodology, outlines how the project approach has been used in subsequent policy-relevant assessments of future climate change under different emissions futures, and summarises the general lessons learnt in the project about model validation and the presentation of multi-sector, multi-region impact assessments and their associated uncertainties to different audiences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, observations and numerical simulations are used to investigate how different El Nino events affect the development of SST anomalies in the Atlantic and how this relates to the Brazilian northeast (NE) precipitation. The results show that different types of El Nino have different impacts on the SST anomalies of the equatorial and tropical South Atlantic but a similar SST response in the tropical North Atlantic. Strong and long (weak and short) El Ninos with the main heating source located in the eastern (central) Pacific generate cold (warm) anomalies in the cold tongue and Benguela upwelling regions during boreal winter and spring. When the SST anomalies in the eastern equatorial and tropical South Atlantic are cold (warm), the meridional SST gradient across the equator is positive (negative) and the ITCZ is not allowed (allowed) to move southward during the boreal spring; as a consequence, the precipitation is below (above) the average over the NE. Thus, strong and long (weak and short) El Ninos are followed by dry (wet) conditions in the NE. During strong and long El Ninos, changes in the Walker circulation over the Atlantic and in the Pacific-South Atlantic (PSA) wave train cause easterly wind anomalies in the western equatorial Atlantic, which in turn activate the Bjerknes mechanism, establishing the cold tongue in boreal spring and summer. These easterly anomalies are also responsible for the Benguela upwelling. During short and weak El Ninos, westerly wind anomalies are present in the western equatorial Atlantic accompanied by warm anomalies in the eastern equatorial and tropical South Atlantic; a positive phase of the South Atlantic dipole develops during boreal winter. The simulations highlight the importance of ocean dynamics in establishing the correct slope of the equatorial thermocline and SST anomalies, which in turn determine the correct rainfall response over the NE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO(2)] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO(2) enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO(2)-enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C(3) crops are likely to produce more harvestable products and that both C(3) and C(4) crops are likely to use less water with rising atmospheric [CO(2)] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO(2)] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO(2) world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The regionwide study of the effects of climate change in the coastal areas of Latin America and the Caribbean has been divided into four main parts in line with the comprehensive risk-assessment methodology that was developed as research progressed. The outputs of this regional study are presented in four core documents: an analysis of the factors that are driving climate change, a study on the vulnerability of coastal areas, an evaluation of the impacts of climate change and an exploration of how all these different factors can be brought together in an assessment of the risks associated with some of the impacts of climate change on the region’s coastal areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of the present study was to determine the value of impacts due to climate change on the agricultural sector in the Caribbean under the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2 and B2 scenarios. More specifically, the study aimed to evaluate the direction and magnitude of the potential impacts of climate change on aggregate agricultural output and other key agricultural indicators. Further, the study forecast changes in income for agricultural output for key subsectors under the A2 and B2 scenarios, from 2011 to 2050. It analysed the benefits and costs of the key adaptation strategies identified by Caribbean Governments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change poses special challenges for Caribbean decision makers related to the uncertainties inherent in future climate projections and the complex linkages between climate change, physical and biological systems, and socioeconomic sectors. At present, however, the Caribbean subregion lacks the adaptive capacity needed to address these challenges. The present report assesses the economic and social impacts of climate change on the coastal and marine sector in the Caribbean until 2050. It aims both to provide Caribbean decision makers with cutting edge information on the vulnerability to climate change of the subregion, and to facilitate the development of adaptation strategies informed by both local experience and expert knowledge.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present report assesses the economic and social impacts of climate change on the energy sector in Antigua and Barbuda, the Bahamas, Barbados, Belize, Cuba, Dominica, the Dominican Republic, Haiti, Grenada, Guyana, Jamaica, Saint Kitts and Nevis, Saint Vincent and the Grenadines, Saint Lucia, Suriname, and Trinidad and Tobago. In the study, the Artificial Neural Network methodology was employed to model the relationship between climate change and energy demand. The viability of the actions proposed were assessed using cost benefit analyses based on models from the National Renewable Energy Laboratory (NREL) of the United States of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climate change affects the fundamental bases of good human health, which are clean air, safe drinking water, sufficient food, and secure shelter. Climate change is known to impact health through three climate dimensions: extreme heat, natural disasters, and infections and diseases. The temporal and spatial climatic changes that will affect the biology and ecology of vectors and intermediate hosts are likely to increase the risks of disease transmission. The greatest effect of climate change on disease transmission is likely to be observed at the extremes of the range of temperatures at which transmission typically occurs. Caribbean countries are marked by unique geographical and geological features. When combined with their physical, infrastructural development, these features make them relatively more prone to negative impacts from changes in climatic conditions. The increased variability of climate associated with slow-moving tropical depressions has implications for water quality through flooding as well as hurricanes. Caribbean countries often have problems with water and sanitation. These problems are exacerbated whenever there is excess rainfall, or no rainfall. The current report aims to prepare the Caribbean to respond better to the anticipated impact of climate change on the health sector, while fostering a subregional Caribbean approach to reducing carbon emissions by 2050. It provides a major advance on the analytical and contextual issues surrounding the impact of climate change on health in the Caribbean by focusing on the vector-borne and waterborne diseases that are anticipated to be impacted directly by climate change. The ultimate goal is to quantify both the direct and indirect costs associated with each disease, and to present adaptation strategies that can address these health concerns effectively to benefit the populations of the Caribbean.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are significant, fundamental changes taking place in global air and sea surface temperatures and sea levels. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change noted that many of the warmest years on the instrumental record of global surface temperatures have occurred within the last twelve years, i.e. 1995-2006 (IPCC, 2007). The Caribbean tourism product is particularly vulnerable to climate change. On the demand side, mitigation measures in other countries – for example, measures to reduce the consumption of fossil fuels – could have implications for airfares and cruise prices and, therefore, for the demand for travel, particularly to long-haul destinations such as the Caribbean (Clayton, 2009). On the supply side, sea level rise will cause beaches to disappear and damage coastal resorts. Changes in the frequency and severity of hurricanes are likely to magnify that damage. Other indirect impacts on the tourism product include rising insurance premiums and competition for water resources (Cashman, Cumberbatch, & Moore, 2012). The present report has used information on historic and future Caribbean climate data to calculate that the Caribbean tourism climatic index (TCI) ranges from −20 (impossible) to +100 (ideal). In addition to projections for the Caribbean, the report has produced TCI projections for the New York City area (specifically, Central Park), which have been used as comparators for Caribbean country projections. The conditions in the source market provide a benchmark against which visitors may judge their experience in the tourism destination. The historical and forecasted TCIs for the Caribbean under both the A2 and B2 climate scenarios of the IPCC suggest that climatic conditions in the Caribbean are expected to deteriorate, and are likely to become less conducive to tourism. More specifically, the greatest decline in the TCI is likely to occur during the northern hemisphere summer months from May to September. At the same time, the scenario analysis indicates that home conditions during the traditional tourist season (December – April) are likely to improve, which could make it more attractive for visitors from these markets to consider ‘staycations’ as an alternative to overseas trips.