941 resultados para Classical super-integrable field theory
Resumo:
We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.
Resumo:
We examine the stability of lamellar stacks in the presence of an electric field, E-0, applied normal to the lamellae. Calculations are performed with self-consistent field theory (SCFT) supplemented by an exact treatment of the electrostatic energy for linear dielectric materials. The calculations identify a critical electric field, E-0*, beyond which the lamellar stack becomes unstable with respect to undulations. This E-0* rapidly decreases towards zero as the number of lamellae in the stack diverges. Our quantitative predictions for E-0* are consistent with previous experimental measurements by Xu and co-workers.
Resumo:
The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field perpendicular to the Ho3+ Ising direction has shown over the past 20 years to be a host of very interesting thermodynamic and magnetic phenomena. Unfortunately, the availability of other magnetic materials other than LiHoxY1−xF4 that may be described by a transverse-field Ising model remains very much limited. It is in this context that we use here a mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3, and Tb(OH)3 insulating hexagonal dipolar Ising-type ferromagnets for the study of the quantum phase transition induced by a magnetic field, Bx, applied perpendicular to the Ising spin direction. Experimentally, the zero-field critical (Curie) temperatures are known to be Tc≈2.54, 3.48, and 3.72 K, for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. From our calculations we estimate the critical transverse field, Bxc, to destroy ferromagnetic order at zero temperature to be Bxc=4.35, 5.03, and 54.81 T for Ho(OH)3, Dy(OH)3, and Tb(OH)3, respectively. We find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective S=1/2 transverse-field Ising model. This is not the case for Dy(OH)3 due to the strong admixing between the ground doublet and first excited doublet induced by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low temperatures. Hence, the PM to FM zero-temperature transition in Dy(OH)3 may be first order and not quantum critical. We investigate the effect of competing antiferromagnetic nearest-neighbor exchange and applied magnetic field, Bz, along the Ising spin direction ẑ on the first-order transition in Dy(OH)3. We conclude from these preliminary calculations that Ho(OH)3 and Dy(OH)3 and their Y3+ diamagnetically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting systems to study transverse-field-induced quantum fluctuations effects in hard axis (Ising-type) magnetic materials.
Resumo:
This paper examines the normal force between two opposing polyelectrolyte brushes and the interpenetration of their chains that is responsible for sliding friction. It focuses on the special case of semi-dilute brushes in a salt-free theta solvent, for which Zhulina and Borisov [J. Chem. Phys., {\bf 107}, 5952, (1997)] have derived analytical predictions using the classical strong-stretching theory (SST) introduced by Semenov and developed by Milner, Witten and Cates. Interestingly, the SST predicts that the brushes contract maintaining a polymer-free gap as they are compressed together, which provides an explanation for the ultra-low frictional forces observed in experiment. We examine the degree to which the SST predictions are affected by chain fluctuations by employing self-consistent field theory (SCFT). While the normal force is relatively unaffected, fluctuations are found to have a strong impact on brush interpenetration. Even still, the contraction of the brushes does significantly prolong the onset of interpenetration, implying that a sizeable normal force can be achieved before the sliding friction becomes significant.
Resumo:
We present an efficient strategy for mapping out the classical phase behavior of block copolymer systems using self-consistent field theory (SCFT). With our new algorithm, the complete solution of a classical block copolymer phase can be evaluated typically in a fraction of a second on a single-processor computer, even for highly segregated melts. This is accomplished by implementing the standard unit-cell approximation (UCA) for the cylindrical and spherical phases, and solving the resulting equations using a Bessel function expansion. Here the method is used to investigate blends of AB diblock copolymer and A homopolymer, concentrating on the situation where the two molecules are of similar size.
Resumo:
Classical strong-stretching theory (SST) predicts that, as opposing polyelectrolyte brushes are compressed together in a salt-free theta solvent, they contract so as to maintain a finite polymer-free gap, which offers a potential explanation for the ultra-low frictional forces observed in experiments even with the application of large normal forces. However, the SST ignores chain fluctuations, which would tend to close the gap resulting in physical contact and in turn significant friction. In a preceding study, we examined the effect of fluctuations using self-consistent field theory (SCFT) and illustrated that high normal forces can still be applied before the gap is destroyed. We now look at the effect of adding salt. It is found to reduce the long-range interaction between the brushes but has little effect on the short-range part, provided the concentration does not enter the salted-brush regime. Consequently, the maximum normal force between two planar brushes at the point of contact is remarkably unaffected by salt. For the crossed-cylinder geometry commonly used in experiments, however, there is a gradual reduction because in this case the long-range part of the interaction contributes to the maximum normal force.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them theta-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing theta-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract theta-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein-Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as theta-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein-Gordon and Dirac equations in the noncommutative field theories. The theta-modified action of the relativistic spinning particle is just a generalization of the Berezin-Marinov pseudoclassical action for the noncommutative case.
Resumo:
We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to take the first steps towards defining the concept of quasi-integrability. We consider one such definition and use it to calculate an infinite number of quasi-conserved quantities through a modification of the usual techniques of integrable field theories. Performing an expansion around the sine-Gordon theory we are able to evaluate the charges and the anomalies of their conservation laws in a perturbative power series in a small parameter which describes the ""closeness"" to the integrable sine-Gordon model. We show that in the case of the two-soliton scattering the charges, up to first order of perturbation, are conserved asymptotically, i.e. their values are the same in the distant past and future, when the solitons are well separated. We indicate that this property may hold or not to higher orders depending on the behavior of the two-soliton solution under a special parity transformation. For closely bound systems, such as breather-like field configurations, the situation however is more complex and perhaps the anomalies have a different structure implying that the concept of quasi-integrability does not apply in the same way as in the scattering of solitons. We back up our results with the data of many numerical simulations which also demonstrate the existence of long lived breather-like and wobble-like states in these models.
Resumo:
In this paper we present our preliminary results which suggest that some field theory models are `almost` integrable; i.e. they possess a large number of `almost` conserved quantities. First we demonstrate this, in some detail, on a class of models which generalise sine-Gordon model in (1+1) dimensions. Then, we point out that many field configurations of these models look like those of the integrable systems and others are very close to being integrable. Finally we attempt to quantify these claims looking in particular, both analytically and numerically, at some long lived field configurations which resemble breathers.
Resumo:
We present a one-parameter extension of the raise and peel one-dimensional growth model. The model is defined in the configuration space of Dyck (RSOS) paths. Tiles from a rarefied gas hit the interface and change its shape. The adsorption rates are local but the desorption rates are non-local; they depend not only on the cluster hit by the tile but also on the total number of peaks (local maxima) belonging to all the clusters of the configuration. The domain of the parameter is determined by the condition that the rates are non-negative. In the finite-size scaling limit, the model is conformal invariant in the whole open domain. The parameter appears in the sound velocity only. At the boundary of the domain, the stationary state is an adsorbing state and conformal invariance is lost. The model allows us to check the universality of non-local observables in the raise and peel model. An example is given.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.
Resumo:
The objective of this dissertation is the development of a general formalism to analyze the thermodynamical properties of a photon gas under the context of nonlinear electrodynamics (NLED). To this end it is obtained, through the systematic analysis of Maxwell s electromagnetism (EM) properties, the general dependence of the Lagrangian that describes this kind of theories. From this Lagrangian and in the background of classical field theory, we derive the general dispersion relation that photons must obey in terms of a background field and the NLED properties. It is important to note that, in order to achieve this result, an aproximation has been made in order to allow the separation of the total electromagnetic field into a strong background electromagnetic field and a perturbation. Once the dispersion relation is in hand, the usual Bose-Einstein statistical procedure is followed through which the thermodynamical properties, energy density and pressure relations are obtained. An important result of this work is the fact that equation of state remains identical to the one obtained under EM. Then, two examples are made where the thermodynamic properties are explicitly derived in the context of two NLED, Born-Infelds and a quadratic approximation. The choice of the first one is due to the vast appearance in literature and, the second one, because it is a first order approximation of a large class of NLED. Ultimately, both are chosen because of their simplicity. Finally, the results are compared to EM and interpreted, suggesting possible tests to verify the internal consistency of NLED and motivating further developement into the formalism s quantum case