965 resultados para Chemical ionization mass spectrometry.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the O-C bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen [O-2 ((1)Delta(g))]. In this study, two cis- and trans-tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. These photoproducts underwent thermal decay into the corresponding alcohols. Additionally, WOOHs were shown to decompose under heating or basification, leading to the formation of N-formylkynurenine (FMK). Using O-18-labeled hydroperoxides ((WOOH)-O-18-O-18), it was possible to confirm the formation of two oxygen-labeled FMK molecules derived from (WOOH)-O-18-O-18 decomposition. This result demonstrates that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In mammalian membranes, cholesterol is concentrated in lipid rafts. The generation of cholesterol hydroperoxides (ChOOHs) and their decomposition products induces various types of cell damage. The decomposition of some organic hydroperoxides into peroxyl radicals is known to be a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. We report herein on evidence of the generation of O(2) ((1)Delta(g)) from ChOOH isomers in solution or in liposomes containing ChOOHs, which involves a cyclic mechanism from a linear tetraoxide intermediate originally proposed by Russell. Characteristic light emission at 1270 nm, corresponding to O(2) ((1)Delta(g)) monomolecular decay, was observed for each ChOOH isomer or in liposomes containing ChOOHs. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated using the direct spectral characterization of near-infrared light emission. Using (18)O-labeled cholesterol hydroperoxide (Ch(18)O(18)OH), we observed the formation of (18)O-labeled O(2) ((1)Delta(g)) [(18)O(2) ((1)Delta(g))] by the chemical trapping of (18)O(2) ((1)Delta(g)) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) and the (18)O-labeled products of the Russell mechanism using high-performance liquid chromatography coupled to tandem mass spectrometry. Photoemission properties and chemical trapping clearly demonstrate that the decomposition of Ch(18)O(18)OH generates (18)O(2) ((1)Delta(g)), which is consistent with the Russell mechanism and points to the involvement of O(2) ((1)Delta(g)) in cholesterol hydroperoxide-mediated cytotoxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation of cholesterol (Ch) by a variety of reactive oxygen species gives rise mainly to hydroperoxides and aldehydes. Despite the growing interest in Ch-oxidized products, the detection and characterization of these products is still a matter of concern. In this work, the main Ch-oxidized products, namely, 3 beta-hydroxycholest-5-ene-7 alpha-hydroperoxide (7 alpha-OOH), 3 beta-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH), and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld), were detected in the same analysis using high-performance liquid chromatography (HPLC) coupled to dopant assisted atmospheric pressure photoionization tandem mass spectrometry. The use of selected reaction monitoring mode (SRM) allowed a sensitive detection of each oxidized product, while the enhanced product ion mode (EPI) helped to improve the confidence of the analyses. Isotopic labeling experiments enabled one to elucidate mechanistic features during fragmentation processes. The characteristic fragmentation pattern of Ch-oxidized products is the consecutive loss of 1120 molecules, yielding cationic fragments at m/z 401, 383, and 365. Homolytic scissions of the peroxide bond are also seen. With (18)O-labeling approach, it was possible to establish a fragmentation order for each isomer. The SRM transitions ratio along with EPI and (18)O-labeled experiments give detailed information about differences for water elimination, allowing a proper discrimination between the isomers:Phis is of special interest considering the emerging role of Ch-oxidized products in the development of diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exocyclic DNA adducts produced by exogenous and endogenous compounds are emerging as potential tools to study a variety of human diseases and air pollution exposure. A highly sensitive method involving online reverse-phase high performance liquid chromatography with electrospray tandem mass spectrometry detection in the multiple reaction monitoring mode and employing stable isotope-labeled internal standards was developed for the simultaneous quantification of 1,N(2)-etheno-2`-deoxyguanosine (1,N(2)-epsilon dGuo) and 1,N(2)-propano-2`-deoxyguanosine (1,N(2)-propanodGuo) in DNA. This methodology permits direct online quantification of 2`-deoxyguanosine and ca. 500 amol of adducts in 100 mu g of hydrolyzed DNA M the same analysis. Using the newly developed technique, accurate determinations of 1,N(2)-etheno-2`-deoxyguanosine and 1,N2-propano-2`-deoxyguanosine levels in DNA extracts of human cultured cells (4.01 +/- 0.32 1,N(2)-epsilon dGuo/10(8) dGuo and 3.43 +/- 0.33 1,N(2)-propanodGuo/10(8) dGuo) and rat tissue (liver, 2.47 +/- 0.61 1,N(2)-epsilon dGuo/10(8) dGuo and 4.61 +/- 0.69 1,N(2)-propanodGuo/108 dGuo; brain, 2.96 +/- 1.43,N(2)-epsilon dGuo/10(8) dGuo and 5.66 +/- 3.70 1,N(2)-propanoclGuo/10(8) dGuo; and lung, 0,87 +/- 0.34 1,N(2)-edGuo/ 10(8) dGuo and 2.25 +/- 1.72 1,N(2)-propanodGuo/10(8) dGuo) were performed. The method described herein can be used to study the biological significance of exocyclic DNA adducts through the quantification of different adducts in humans and experimental an with pathological conditions and after air pollution exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the chemical profile of 14 specimens of Aplysina spp. marine sponges, we have developed a method based on LC-PDA-MS for the detection of bromotyrosine-derived metabolites. The method enabled the dereplication of three distinct chemotypes of bromotyrosine-derived compounds based on UV absorptions, which were further refined by electrospray ionization-mass spectrometry analysis of the brominated quasi-molecular ion clusters. This procedure led to either a single compound assignment, or a maximum of two possible isobaric compounds. The dereplication study indicated that the chemical profile of the 14 specimens of Aplysina spp. analyzed presented practically the same dibromotyrosine-derived compounds. The results obtained suggested a possible biogenetic pathway for the formation of dibromotyrosine-derived compounds of wide occurrence in Verongida sponges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analytical procedure for the separation and quantification of ethyl acetate, ethyl butyrate, ethyl hexanoate, ethyl lactate, ethyl octanoate, ethyl nonanoate, ethyl decanoate, isoamyl octanoate, and ethyl laurate in cachaca, rum, and whisky by direct injection gas chromatography-mass spectrometry was developed. The analytical method is simple, selective, and appropriated for the determination of esters in distilled spirits. The limit of detection ranged from 29 (ethyl hexanoate) to 530 (ethyl acetate) mu g L-1, whereas the standard deviation for repeatability was between 0.774% (ethyl hexanoate) and 5.05% (isoamyl octanoate). Relative standard deviation values for accuracy vary from 90.3 to 98.5% for ethyl butyrate and ethyl acetate, respectively. Ethyl acetate was shown to be the major ester in cachaca (median content of 22.6 mg 100 mL(-1) anhydrous alcohol), followed by ethyl lactate (median content of 8.32 mg 100 mL(-1) anhydrous alcohol). Cachaca produced in copper and hybrid alembic present a higher content of ethyl acetate and ethyl lactate than those produced in a stainless-steel column, whereas cachaca produced by distillation in a stainless-steel column present a higher content of ethyl octanoate, ethyl decanoate, and ethyl laurate. As expected, ethyl acetate is the major ester in whiskey and rum, followed by ethyl lactate for samples of rum. Nevertheless, whiskey samples exhibit ethyl lactate at contents lower or at the same order of magnitude of the fatty esters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct analysis, with minimal sample pretreatment, of antidepressant drugs, fluoxetine, imipramine, desipramine, amitriptyline, and nortriptyline in biofluids was developed with a total run time of 8 min. The setup consists of two HPLC pumps, injection valve, capillary RAM-ADS-C18 pre-column and a capillary analytical C 18 column connected by means of a six-port valve in backflush mode. Detection was performed with ESI-MS/MS and only 1 mu m of sample was injected. Validation was adequately carried out using FLU-d(5) as internal standard. Calibration curves were constructed under a linear range of 1-250 ng mL(-1) in plasma, being the limit of quantification (LOQ), determined as 1 ng mL(-1), for all the analytes. With the described approach it was possible to reach a quantified mass sensitivity of 0.3 pg for each analyte (equivalent to 1.1-1.3 fmol), translating to a lower sample consumption (in the order of 103 less sample than using conventional methods). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of volatile compounds in Funchal, Madeira, Mateus and Perry Vidal cultivars of Annona cherimola Mill. (cherimoya) was carried out by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry detection (GC–qMSD). HS-SPME technique was optimized in terms of fibre selection, extraction time, extraction temperature and sample amount to reach the best extraction efficiency. The best result was obtained with 2 g of sample, using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre for 30 min at 30 °C under constant magnetic stirring (800 rpm). After optimization of the extraction methodology, all the cherimoya samples were analysed with the best conditions that allowed to identify about 60 volatile compounds. The major compounds identified in the four cherimoya cultivars were methyl butanoate, butyl butanoate, 3-methylbutyl butanoate, 3-methylbutyl 3-methylbutanoate and 5-hydroxymethyl-2-furfural. These compounds represent 69.08 ± 5.22%, 56.56 ± 15.36%, 56.69 ± 9.28% and 71.82 ± 1.29% of the total volatiles for Funchal, Madeira, Mateus and Perry Vidal cultivars, respectively. This study showed that each cherimoya cultivars have 40 common compounds, corresponding to different chemical families, namely terpenes, esters, alcohols, fatty acids and carbonyl compounds and using PCA, the volatile composition in terms of average peak areas, provided a suitable tool to differentiate among the cherimoya cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE–LD/LVI-GC–qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9–17.8%), and low detection limits were achieved for nine volatile compounds (0.05–9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE–LD/LVI-GC–qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The establishment of potential age markers of Madeira wine is of paramount significance as it may contribute to detect frauds and to ensure the authenticity of wine. Considering the chemical groups of furans, lactones, volatile phenols, and acetals, 103 volatile compounds were tentatively identified; among these, 71 have been reported for the first time in Madeira wines. The chemical groups that could be used as potential age markers were predominantly acetals, namely, diethoxymethane, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane and 2-propyl-1,3-dioxolane, and from the other chemical groups, 5-methylfurfural and cis-oak-lactone, independently of the variety and the type of wine. GC × GC-ToFMS system offers a more useful approach to identify these compounds compared to previous studies using GC−qMS, due to the orthogonal systems, that reduce coelution, increase peak capacity and mass selectivity, contributing to the establishment of new potential Madeira wine age markers. Remarkable results were also obtained in terms of compound identification based on the organized structure of the peaks of structurally related compounds in the GC × GC peak apex plots. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This new approach provides data that can be extended to determine age markers of other types of wines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applicability of supercritical fluid extraction (SFE) in pesticide multiresidue analysis (organohalogen, organonitrogen, organophosphorus, and pyrethroid) in soil samples was investigated. Fortification experiments were conducted to test the conventional extraction (solid-liquid) and to optimize the extraction procedure in SFE by varying the CO2 Modifier, temperature, extraction time, and pressure. The best efficiency was achieved at 400 bar using methanol as modifier at 60 degreesC. For the SFE method, C-18 cartridges were used for the cleanup. The analytical screening was performed by gas chromatography equipped with electron-capture detection (ECD). Recoveries for the majority of pesticides from spiked samples of soil at different residence times were 1, 20, and 40 days at the fortification level of 0.04-0.10 mg/kg ranging from 70 to 97% for both methods. The detection limits found were <0.01 mg/kg for ECD, and the confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in a selected-ion monitoring mode. Multiresidue methods were applied in real soil samples, and the results of the methods developed were compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the study of the fragmentation process of diethylene glycol dimethyl ether (CH3O(CH2CH2O)(2)CH3) (diglyme here in) molecule in low pressure RF excited plasma discharges. The study was carried out using mass spectrometry. The results showed that for a fixed pressure, the increase of the RF power coupled to the plasma chamber from 1 to 35 W produced a plasma environment much more reactive which increases the population of the ionized species like CH3+ (15 amu), C2H4+ (28 amu), CH3O+ (31 amu), C2H4O+ (44 amu), CH3OCH2CH2+ (59 amu) and CH3OCH2CH2O+ (75 amu). This fact may be attributed to the increase of the electronic temperature that makes predominant the occurrence of inelastic processes that promotes molecular fragmentation. For a fixed value of RF power the increase of pressure from 50 mTorr to 100 mTorr produces the decreasing of the above mentioned chemical species due the lower electronic mean free path. These results suggest that if one wants to keep the monomer's functionality within the plasma deposited films resulting from such kind of discharges one must operate in low power conditions.