977 resultados para Chemical and enzymatic hydrolysis
Chemical and biochemical characterization of guava and araçá fruits from different regions of Brazil
Resumo:
Guava and araçá, species of the Psidium genus, are important options for Brazilian agribusiness, especially the former species, due to their fruit characteristics, such as appearance, taste and richness in minerals and phenolic compounds. These fruits can be consumed in natura or in several processed forms. The active germplasm bank is an important tool for genetic resource characterization and plant breeding studies. Sixty guava and ten araçá accessions of the Psidium active germplasm, sampled in 44 different Brazilian regions and grown at Embrapa Semiarid, were chemically and biochemically characterized in order to support breeding programs. The accessions were grown in a randomized block design, with two replications and three plants/plot. The sugar, proteins, soluble solids, titratable acidity, calcium, magnesium, iron and phosphorus contents were determined. Large variations were observed in the analyzed compounds, which could be attributed to the diversity of genotypes and also to the environmental conditions, which affect the plant metabolism. The high variability observed in most parameters of the accessions is an important factor for the improvement of these species. Most guava accessions showed higher titratable acidity and soluble solids than those found in commercial cultivars and, in araçá, these levels were even higher, which makes them promising for commercial exploitation. Moreover, fruits of the guava and araçá accessions present good sources of sugars and minerals. Special attention should be given to some guava and araçá accessions from Maranhão and Pernambuco States, respectively, which showed high levels for titratable acidity, soluble solids, SS/TA ratio, total soluble sugars, calcium, magnesium and iron, should be targets of breeding programs for new Psidium cultivars. © ISHS.
Resumo:
Background: Diminishing supplies of fossil fuels and oil spills are rousing to explore the alternative sources of energy that can be produced from non-food/feed-based substrates. Due to its abundance, sugarcane bagasse (SB) could be a model substrate for the second-generation biofuel cellulosic ethanol. However, the efficient bioconversion of SB remains a challenge for the commercial production of cellulosic ethanol. We hypothesized that oxalic-acid-mediated thermochemical pretreatment (OAFEX) would overcome the native recalcitrance of SB by enhancing the cellulase amenability toward the embedded cellulosic microfibrils. Results: OAFEX treatment revealed the solubilization of hemicellulose releasing sugars (12.56 g/l xylose and 1.85 g/l glucose), leaving cellulignin in an accessible form for enzymatic hydrolysis. The highest hydrolytic efficiency (66.51%) of cellulignin was achieved by enzymatic hydrolysis (Celluclast 1.5 L and Novozym 188). The ultrastructure characterization of SB using scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Fourier transform-near infrared spectroscopy (FT-NIR), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) revealed structural differences before and after OAFEX treatment with enzymatic hydrolysis. Furthermore, fermentation mediated by C. shehatae UFMG HM52.2 and S. cerevisiae 174 showed fuel ethanol production from detoxified acid (3.2 g/l, yield 0.353 g/g; 0.52 g/l, yield, 0.246 g/g) and enzymatic hydrolysates (4.83 g/l, yield, 0.28 g/g; 6.6 g/l, yield 0.46 g/g). Conclusions: OAFEX treatment revealed marked hemicellulose degradation, improving the cellulases ability to access the cellulignin and release fermentable sugars from the pretreated substrate. The ultrastructure of SB after OAFEX and enzymatic hydrolysis of cellulignin established thorough insights at the molecular level. © 2013 Chandel et al; licensee BioMed Central Ltd.
Resumo:
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (ε275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H 2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M -1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Resumo:
Métodos quimiométricos (estatísticos) são empregados para classificar um conjunto de compostos derivados de neolignanas com atividade biológica contra a Paracoccidioides brasiliensis. O método AM1 (Austin Model 1) foi utilizado para calcular um conjunto de descritores moleculares (propriedades) para os compostos em estudo. A seguir, os descritores foram analisados utilizando os seguintes métodos de reconhecimento de padrões: Análise de Componentes Principais (PCA), Análise Hierárquica de Agrupamentos (HCA) e o método de K-vizinhos mais próximos (KNN). Os métodos PCA e HCA mostraram-se bastante eficientes para classificação dos compostos estudados em dois grupos (ativos e inativos). Três descritores moleculares foram responsáveis pela separação entre os compostos ativos e inativos: energia do orbital molecular mais alto ocupado (EHOMO), ordem de ligação entre os átomos C1'-R7 (L14) e ordem de ligação entre os átomos C5'-R6 (L22). Como as variáveis responsáveis pela separação entre compostos ativos e inativos são descritores eletrônicos, conclui-se que efeitos eletrônicos podem desempenhar um importante papel na interação entre receptor biológico e compostos derivados de neolignanas com atividade contra a Paracoccidioides brasiliensis.
Resumo:
Nesse trabalho, foram caracterizados, pela primeira vez, azulejos históricos portugueses do Centro Histórico de São Luís (CHSL) do Maranhão. A caracterização foi realizada através dos ensaios de microscopia ótica, difração de raios X (DRX) e análise química, visando ao uso dessa informação para a determinação das possíveis matérias-primas utilizadas na sua fabricação, bem como a provável temperatura de queima desses materiais. Os resultados mostraram que a microestrutura desses materiais é constituída por poros de tamanhos variados, apresentando incrustações de calcita e grãos de quartzo de tamanhos inferiores a 500 µm, distribuídos numa matriz de cor rosa-amarelo, onde foram identificadas, por DRX, as fases minerais calcita, gelhenita, wollastonita, quartzo e amorfo. A partir da informação obtida, é possível inferir que as matérias-primas originais estiveram constituídas, provavelmente, por mistura de argilas caoliníticas (Al2O3•2SiO,2•2H2O), ricas em carbonatos de cálcio e quartzo ou misturas de argilas caoliniticas, quartzo e calcita. Essas matérias-primas originais não atingiram a temperatura de cocção de 950ºC.
Resumo:
Nesse trabalho, foram caracterizadas algumas argilas coletadas nos municípios de São Luís, Rosário, Pinheiro e Mirinzal. A caracterização foi realizada através dos ensaios de difração de raios X, massa específica real, capacidade de troca de cátions (CTC), área superficial, distribuição granulométrica, análise química, análise térmica (TG-DTA) e limites de Atterberg. Ensaios tecnológicos de retração linear, antes e após a queima, absorção de água e tensão de ruptura a flexão, em três pontos, foram realizados em corpos de prova prensados uniaxialmente a 20 MPa e tratados termicamente em 850, 950, 1050, 1150 e 1250ºC. Os resultados obtidos permitiram identificar duas argilas de queima branca, constituídas de quartzo, caolim, feldspato e anatásio, com excelentes propriedades para uso em cerâmica branca. As restantes são queima vermelha e possuem composição mineralógica de quartzo, caolim, feldspato, montmorilonita, hematita e goetita. Estas últimas apresentaram valores moderados de plasticidade e são adequadas para aplicações em cerâmica vermelha.
Resumo:
The use of cover crops has been suggested as an effective method to maintain and/or increase the organic matter content, while maintaining and/or enhancing the soil physical, chemical and biological properties. The fertility of Cerrado soils is low and, consequently, phosphorus levels as well. Phosphorus is required at every metabolic stage of the plant, as it plays a role in the processes of protein and energy synthesis and influences the photosynthetic process. This study evaluated the influence of cover crops and phosphorus rates on soil chemical and biological properties after two consecutive years of common bean. The study analyzed an Oxisol in Selvíria (Mato Grosso do Sul, Brazil), in a randomized block, split plot design, in a total of 24 treatments with three replications. The plot treatments consisted of cover crops (millet, pigeon pea, crotalaria, velvet bean, millet + pigeon pea, millet + crotalaria, and millet + velvet bean) and one plot was left fallow. The subplots were represented by phosphorus rates applied as monoammonium phosphate (0, 60 and 90 kg ha-1 P2O5). In August 2011, the soil chemical properties were evaluated (pH, organic matter, phosphorus, potential acidity, cation exchange capacity, and base saturation) as well as biological variables (carbon of released CO2, microbial carbon, metabolic quotient and microbial quotient). After two years of cover crops in rotation with common bean, the cover crop biomass had not altered the soil chemical properties and barely influenced the microbial activity. The biomass production of millet and crotalaria (monoculture or intercropped) was highest. The biological variables were sensitive and responded to increasing phosphorus rates with increases in microbial carbon and reduction of the metabolic quotient.
Resumo:
The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W) with two different soil types, namely: an eutroferric Red Latosol (RLe) with high-clay texture (clay content = 680 g kg-1) and an acric Red Latosol (RLa) with clayey texture (clay content = 440 g kg-1). A randomized block design with five replications and four treatments (crop sequences) was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the influence of finishing and polishing procedures and differ-ent fluoride solutions on superficial morphology and chemistry of the nanofilled composite resinSupreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n 5 30) of 10mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polishedwith Super-Snap1sandpaper. The experimental groups were divided according to the presence or ab-sence of finishing and polishing and solutions (arti ficial saliva, 0.0 5% of manipulated sodium fluoridesolution, Fluordent Re ach, Oral B, Fluorgard). Specimens were immersed in each respective solutionfor 1 min per day, during 60 days and stored in artificial saliva at 37 6 18C between immersion peri-ods. Topography and chemical analysis was qualitative. It was observed that specimens submitted tofinishing and polishing procedures had lower superficial degradation. Fluoride solutio ns promoted su-perficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. Itca n be concluded that finishing and polishing procedures and the immersion media influence the su-perficial morphology of composite resin tested; the Fluordent Reach was the flu oride solution thatmo st affected the material’s surface.
Resumo:
Aims: The study evaluated the influence of light curing units and immersionmedia on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M)through the EDX analysis and SEM evaluation. Light curing units with different power densitiesand mode of application used were XL 3000 (480 mW/cm2), Jet Lite 4000 Plus (1230mW/cm2), andUltralume Led 5 (790 mW/cm2) and immersion media were artificial saliva, Coke1, tea and coffee,totaling 12 experimental groups. Specimens (10 mm 3 2 mm) were immersed in each respectivesolution for 5 min, three times a day, during 60 days and stored in artificial saliva at 378C 6 18Cbetween immersion periods. Topography and chemical analysis was qualitative. Findings: Groupsimmersed in artificial saliva, showed homogeneous degradation of matrix and deposition of calciumat the material surface. Regarding coffee, there was a reasonable chemical degradation with loss ofload particles and deposition of ions. For tea, superficial degradation occurred in specific areaswith deposition of calcium, carbon, potassium and phosphorus. For Coke1, excessive matrix degra-dation and loss of load particles with deposition of calcium, sodium, and potassium. Conclusion:Light curing units did not influence the superficial morphology of composite resin tested, but theimmersion beverages did. Coke1affected material’s surface more than did the other tested drinks.Microsc. Res. Tech. 73:176–181, 2010.
Resumo:
Minas frescal cheese is a semi-skimmed product with high moisture and simple preparation and one of the most consumed in Brazil. Thus, the aim of this study was to combine the characteristics of inulin and gum acacia (by having fibers and being prebiotic) to produce a minas frescal cheese. Were evaluate the characteristics physical and chemical, microbial and sensory acceptance (hedonic scale) of each cheese. Three cheeses were prepared; one as a standard (QP) without inulin, and others with 0.49% (QI25) and 0.98% (QI50) inulin, the amount of gum acacia was maintained. The yield of the formulations with gum acacia and inulin were 9.76% for (QI25) and to 20.03% (QI50) higher than the standard sample. In relation to moisture content, samples containing inulin and gum acacia showed values greater than the standard sample. The sensory analysis indicated no differences between scores for color, aroma and texture, but significant differences were detected for flavor, in which (QI25) received the highest acceptance. Regarding the energy value, it was obtained 276 kcal (QP), 215 kcal (QI25) and 190 kcal (QI50). Therefore, the developed product presents satisfactory results for sensory, microbiological and physical- chemical analyses.