985 resultados para Central Red Sea
Resumo:
This study explores the giant oyster Hyotissa hyotis as a novel environmental archive in tropical reef environments of the Indo-Pacific. The species is a typical accessory component in coral reefs, can reach sizes of tens of centimetres, and dates back to the Late Pleistocene. Here, a 70.2-mm-long oxygen and carbon isotope transect through the shell of a specimen collected at Safaga Bay, northern Red Sea, in May 1996, is presented. The transect runs perpendicularly to the foliate and vesicular layers of the inner ostracum near the ligament area of the oyster. The measured d18O and d13C records show sinusoidal fluctuations, which are independent of shell microstructure. The d13C fluctuations exhibit the same wavelength as the d18O fluctuations but are phase shifted. The d18O record reflects the sea surface temperature variations from 1957 until 1996, possibly additionally influenced by the local evaporation. Due to locally enhanced evaporation in the semi-enclosed Safaga Bay, the d18Oseawater value is estimated at 2.17 per mil, i.e., 0.3-0.8 per mil higher than published open surface water d18O values (1.36-1.85 per mil) from the region. The mean water temperature deviates by only 0.4°C from the expected value, and the minimum and maximum values are 0.5°C lower and 2.9°C higher, respectively. When comparing the mean monthly values, however, the sea surface temperature discrepancy between reconstructed and global grid datasets is always <1.0°C. The d13C signal is weakly negatively correlated with regional chlorophyll a concentration and with the sunshine duration, which may reflect changes in the bivalve's respiration. The study emphasises the palaeogeographic context in isotope studies based on fossils, because coastal embayments might not reflect open-water oceanographic conditions.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Paleoenvironmental proxy data for ocean properties, eolian sediment input, and continental rainfall based on high-resolution analyses of sediment cores from the southwestern Black Sea and the northernmost Gulf of Aqaba were used to infer hydroclimatic changes in northern Anatolia and the northern Red Sea region during the last ~7500 years. Pronounced and coherent multicentennial variations in these records reveal patterns that strongly resemble modern temperature and rainfall anomalies related to the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). These patterns suggest a prominent role of AO/NAO-like atmospheric variability during the Holocene beyond interannual to interdecadal timescales, most likely originating from solar output changes.
Resumo:
Two water samples and two sediment samples taken in 1965 by the R. V. "Meteor" in the area of the hot salt brine of the Atlantis II-Deep were chemically investigated, and in addition the sediment samples were subjected to X-ray and optical analysis. The investigation of the sulfur-isotope-ratios showed the same values for all water samples. This information combined with the Ca-sulfate solubility data leads us to conclude that, for the most part, the sulfate content of the salt brine resulted from mixing along the boundary with the normal seawater. In this boundary area gypsum or anhydrite is formed which sinks down to the deeper layers of the salt brine where it is redisolved when the water becomes undersaturated. In the laboratory, formation of CaS04 precipitate resulted from both the reheating of the water sample from the uppermost zone of the salt brine to the in-situ-temperature as well as by the mixing of the water sample with normal Red Sea water. The iron and manganese delivered by the hot spring is separated within the area of the salt brine by their different redox-potentials. Iron is sedimented to a high amount within the salt brine, while, as evidenced by its small amounts in all sediment samples, the more easily reducible manganese is apparently carried out of the area before sedimentation can take place. The very good layering of the salt brine may be the result of the rough bottom topography with its several progressively higher levels allowing step-like enlargements of the surface areas of each successive layer. Each enlargement results in larger boundary areas along which more effective heat transfer and mixing with the next layer is possible. In the sediment samples up to 37.18% Fe is found, mostly bound as very poorly crystallized iron hydroxide. Pyrite is present in only very small amounts. We assume that the copper is bound mostly as sulfide, while the zinc is most likely present in an other form. The sulfur-isotope-investigations indicate that the sulfur in the sediment, bound as pyrite and sulfides, is not a result of bacterical sulfate-reduction in the iron-rich mud of the Atlantis II-Deep, but must have been brought up with the hot brine.
Resumo:
Coral palaeoclimatic studies are under way at many sites throughout the wet tropics. However, arid environments have received less attention. Here we report a high-resolution, 63 yr record of coral d18O and d13C extracted from a Porites colony from the Dahlak Archipelago, off the Eritrean coast, in the southern Red Sea. The annual cycles of the coral d18O and d13C are inversely related while their inter-annual variations show a strong positive correlation, with similar inter-decadal trends. Inter-annual variations in coral d18O show a relatively weak correlation with the southern Red Sea SST, but are strongly correlated with the Indian Ocean SST, especially on the decadal time-scale. The range of the inter-annual variations in the coral d18O is high compared to changes in local SST, due to the amplifying effect of simultaneous changes in water isotopic composition. Due to this amplification of the climate signal the coral provides a better indication of regional oceangraphic behaviour than the local SST record. The norrtheast monsoon signal in the coral d18O dominates the mean annual signal and shows the best correlation with the instrumental data sets. It appears that variations in the coral d18O are controlled mainly by variations in the intensity of surface water influx from the Indian Ocean to the Red Sea during the winter northeast monsoon. Of particular significance is that the decadal time-scale variations in the coral skeletal d18O are closely correlated with both the Indian Ocean SST and with variations in the Pacific-based Southern Oscillation index. That is, isotopically light coral skeleton, indicating strong NE monsoon Red Sea inflow, correlates with periods of high Indian Ocean SST and with predominantly negative (El Nino) phases of the Southern Oscillation. The simultaneous nature of inter-decadal changes in Asian monsoon and ENSO behaviour suggest pan-Indo-Pacific tropical climate reorganisation and evolution.
Resumo:
The main features of geological structures of ocean rift zones based on results of studies of the P.P. Shirshov Institute of Oceanology with use of manned submersibles "Pisces" are under consideration in the book. Multiyear experience of geological exploration in rift zones with the use of these submersibles is summarized. Methodology of underwater operations is described. The main structural features of the Red Sea and Gulf of Aden rifts as well as the rift zone of the Reykjanes Ridge are considered.
Resumo:
Based on a radiocarbon and paleomagnetically dated sediment record from the northern Red Sea and the exceptional sensitivity of the regional changes in the oxygen isotope composition of sea water to the sea-level-dependent water exchange with the Indian Ocean, we provide a new global sea-level reconstruction spanning the last glacial period. The sea-level record has been extracted from the temperature-corrected benthic stable oxygen isotopes using coral-based sea-level data as constraints for the sea-level/oxygen isotope relationship. Although, the general features of this millennial-scale sea-level records have strong similarities to the rather symmetric and gradual Southern Hemisphere climate patterns, we observe, in constrast to previous findings, pronounced sea level rises of up to 25 m to generally correspond with Northern Hemisphere warmings as recorded in Greenland ice-core interstadial intervals whereas sea-level lowstands mostly occur during cold phases. Corroborated by CLIMBER-2 model results, the close connection of millennial-scale sea-level changes to Northern Hemisphere temperature variations indicates a primary climatic control on the mass balance of the major Northern Hemisphere ice sheets and does not require a considerable Antarctic contribution.
Resumo:
A 245-year coral oxygen isotope record from the northern Red Sea (Ras Umm Sidd/Egypt, ~28°N) in bimonthly resolution is presented. The mean annual coral delta18O signal apparently reflects varying proportions of both sea surface temperature and delta18Oseawater variability. In conjunction with instrumental observations of climate the coral record suggests for interannual and longer timescales that colder periods are accompanied by more arid conditions in the northern Red Sea but increased rainfall in the southeastern Mediterranean, whereas warmer periods are accompanied by decreased rainfall in the latter and less arid conditions in the northern Red Sea. A ~70-year oscillation of probably North Atlantic origin dominates the coral time series. Interannual to interdecadal variability is correlated with instrumental indices of the North Atlantic Oscillation (NAO), the El Niño-Southern Oscillation (ENSO), and North Pacific climate variability. The results suggest that these modes contributed consistently to Middle East climate variability since at least 1750, preferentially at a period of ~5.7 years.
Resumo:
In this study we investigated the relations between community calcification of an entire coral reef in the northern Red Sea and annual changes in temperature, aragonite saturation and nutrient loading over a two year period. Summer (April-October) and winter (November-March) average calcification rates varied between 60 ± 20 and 30 ± 20 mmol·m-2·d-1, respectively. In general, calcification increased with temperature and aragonite saturation state of reef water with an apparent effect of nutrients, which is in agreement with most laboratory studies and in situ measurements of single coral growth rates. The calcification rates we measured in the reef correlated remarkably well with precipitation rates of inorganic aragonite calculated for the same temperature and degree of saturation ranges using empirical equations from the literature. This is a very significant finding considering that only a minute portion of reef calcification is inorganic. Hence, these relations could be used to predict the response of coral reefs to ocean acidification and warming.