982 resultados para CYLINDRICAL CONFIGURATION
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the peri-implant soft and hard tissue adaptation at implants with different modified surfaces and configurations. Six Beagle dogs were used. Mandibular premolars and first molars were extracted bilaterally. After 3 months, full-thickness flaps were elevated, and two different types of trans-mucosal implants (ICX-Gold®, Medentis Medical GmbH, Dernau, Germany and SLActive®, Institute Straumann, Bern, Switzerland) and two different surfaces were randomly installed in the distal regions of one side of the mandible. Abutments were applied, and a nonsubmerged healing was allowed. After 1 month, the procedures were performed in the other side of the mandible, and after a further month, the animals were sacrificed, biopsies were collected, and ground sections prepared for histological examination. Similar results in marginal bone and soft tissues dimensions were observed after 1 month of healing at the two implant systems used, and no major changes could be observed after 2 months of healing. After 1 month, the percentage of new bone was 69.0% and 68.8% at ICX-Gold and SLActive surfaces, respectively. After 2 months, the percentage of new bone was 67.8% and 71.9% at ICX-Gold Medentis and SLActive surfaces, respectively. No statistically significant differences in osseointegration were found. The two implant systems used resulted in similar osseointegration after 1 and 2 months of healing.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
The identification of the factors behind the distribution of plant communities in patched habitats may prove useful towards better understanding how ecosystems function. Plant assemblages are especially important for wetland productivity and provide food and habitat to animals. The present study analyses the distribution of a metacommunity of helophytes and phreatophytes in a wetland complex in oder to identify the effects of habitat configuration on the colonisation process. Ponds with wide vegetated shores and a short distance to a big (> 10 ha) wetland, had higher species richness. The average percentage of surface covered by each species in all the wetlands correlated positively with the number of patches occupied by that species. Moreover, the community presented a nested pattern (species-poor patches were subsets of species-rich patches), and this pattern came about by selective extinction and colonisation processes. We also detected the presence of some idiosyncratic species that did not follow nestedness. Conservation managers should attempt to maximise the vegetated shore width and to reduce the degree of isolation to enhance species richness. Furthermore, a single large and poorly isolated reserve may have the highest level of biodiversity in emergent vegetation species in this wetland complex, however, the particular ecological requirements of idiosyncratic species should also be taken into account when managing this type of community.
Resumo:
Bioenergetic analysis may be applied in order to predict microbial growth yields, based on the Gibbs energy dissipation and mass conservation principles of the overall growth reaction. The bioenergetics of the photoautotrophic growth of the cyanobacterium Arthrospira (Spirulina) platensis was investigated in different bioreactor configurations (tubular photobioreactor and open ponds) using different nitrogen sources (nitrate and urea) and under different light intensity conditions to determine the best growing conditions in terms of Gibbs energy dissipation, number of photons to sustain cell growth and phototrophic energy yields distribution in relation to the ATP and NADPH formation, and release of heat. Although an increase in the light intensity increased the Gibbs energy dissipated for cell growth and maintenance with both nitrogen sources, it did not exert any appreciable influence on the moles of photons absorbed by the system to produce one C-mol biomass. On the other hand, both bioenergetic parameters were higher in cultures with nitrate than with urea, likely because of the higher energy requirements needed to reduce the former nitrogen source to ammonia. They appreciably increased also when open ponds were substituted by the tubular photobioreactor, where a more efficient light distribution ensured a remarkably higher cell mass concentration. The estimated percentages of the energy absorbed by the cell showed that, compared with nitrate, the use of urea as nitrogen source allowed the system to address higher energy fractions to ATP production and light fixation by the photosynthetic apparatus, as well as a lower fraction released as heat. The best energy yields values on Gibbs energy necessary for cell growth and maintenance were achieved in up to 4-5 days of cultivation, indicating that it would be the optimum range to maintain cell growth. Thanks to this better bioenergetic situation, urea appears to be a quite promising low-cost, alternative nitrogen source for Arthrospira platensis cultures in photobioreactors. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The absolute configuration and solution-state conformers of three peperomin-type secolignans isolated from Peperomia blanda (Piperaceae) are unambiguously determined by using vibrational circular dichroism (VCD) spectroscopy associated with density functional theory (DFT) calculations. Advantages of VCD over the electronic form of CD for the analysis of diastereomers are also discussed. This work extends our growing knowledge about secondary metabolites within the Piperaceae family species while providing a definitive and straightforward method to assess the absolute stereochemistry of secolignans.
Resumo:
A reinvestigation of the monoterpene chromane ester enriched fraction from Peperomia obtusifolia using chiral chromatography led to the identification of a minor peak, which was elucidated by NMR and HRMS as fenchyl-3,4-dihydro-5-hydroxy-2,7-dimethyl-8-(3 ''-methyl-2 ''-butenyl)-2-(4'-methyl-1',3'-pentadienyl)-2H-1-benzopyran-6-carboxylate, the same structure assigned to two other fenchyl esters described previously, pointing out a stereoisomeric relationship among them. Further NMR analysis revealed that it was actually a mixture of two compounds, whose absolute configurations were determined by VCD measurements. Although, almost no vibrational transitions could be assigned to the chiral chromane, the experimental VCD spectrum was largely opposite to that obtained for the average experimental VCD [(2S,1'''R,2'''R,4'''S + 2R,1'''R,2'''R,4'''S)/2] for fenchol derivatives. These results allowed us to assign the putative compounds as a racemic mixture of the chiral chromane esterified with the monoterpene (1S,2S,4R)fenchol, which had not been identified in our early work. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Study Design. Ex vivo study of the mechanical performance of cylindrical and dual-core pedicle screws after insertion, removal, and reinsertion in the same hole. Objective. To evaluate the effect of repeated use of same screw hole on the insertion torque and the retentive strength of the cylindrical and dual-core screws. Summary of Background Data. Insertion and removal of pedicle screws is sometimes necessary during surgical procedure to assess the integrity of the pilot-hole wall. However, this maneuver may compromise the implant-holding capacity. Methods. Sixty thoracolombar vertebrae (T13-L5), harvested from 10 healthy calves, were used to insert 2 different designs of pedicle screws: cylindrical (5.0-mm outer diameter) and dual-core screws (5.2-mm outer diameter). Three experimental groups were created on the basis of the number of insertions of the screws and 2 subgroups were established according to the core pedicle screw design (dual-core and cylindrical). The insertion torque was measured during initial insertion, second insertion, and third insertion. Pullout screw tests were performed using a universal testing machine to evaluate the pullout strength after initial insertion, second insertion, and third insertion. Results. Significant reductions of 38% in mean insertion torque and 30% in mean pullout strength of dual-core screw were observed between the initial insertion and the third insertion. The cylindrical screw observed significant reductions of 52.5% in mean insertion torque and 42.3% in mean pullout strength between the initial insertion and the third insertion. A reduction of mean insertion torque and pullout strength between the first insertion and the second insertion but without significance was also observed for both types of screws. Conclusion. Insertions and reinsertion of either cylindrical or dual-core pedicle screws have compromised insertion torque and pullout strength of the implants as measured by mechanical tests.
Resumo:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
Resumo:
Catenary risers can present during installation a very low tension close to seabed, which combined with torsion moment can lead to a structural instability, resulting in a loop. This is undesirable once it is possible that the loop turns into a kink, creating damage. This work presents a numerical methodology to analyze the conditions of loop formation in catenary risers. Stability criteria were applied to finite element models, including geometric nonlinearities and contact constraint due to riser-seabed interaction. The classical Greenhill's formula was used to predict the phenomenon and parametric analysis shows a “universal plot” able to predict instability in catenaries using a simple equation that can be applied for typical risers installation conditions and, generically, for catenary lines under torsion.
Resumo:
We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.
Resumo:
Topologies of motor drive systems are studied, aiming the reduction of common-mode (CM) currents. Initially, the aspects concerning the CM currents circulation are analysed. The reason of common-mode voltages generation, the circulating paths for the resulting CM currents and their effects are discussed. Then, a non-conventional drive system configuration is proposed in order to reduce the CM currents and their effects. This configuration comprehends a non-conventional inverter module wired to a motor with an unusual connection. The cables arrangement differs from the standard solution, too. The proposed topology is compared with other ones, like the active circuit for common-mode voltages compensation. The contribution of the configuration to the reduction of CM voltages and currents and their related interferences are evaluated, based on numerical simulations. Some results are presented and discussed regarding the suitability of the proposed configuration as a potential solution to reduce the CM currents effects, when the state of art and implementation cost of drives are taken into account.
Resumo:
[EN] In this paper we present a variational technique for the reconstruction of 3D cylindrical surfaces. Roughly speaking by a cylindrical surface we mean a surface that can be parameterized using the projection on a cylinder in terms of two coordinates, representing the displacement and angle in a cylindrical coordinate system respectively. The starting point for our method is a set of different views of a cylindrical surface, as well as a precomputed disparity map estimation between pair of images. The proposed variational technique is based on an energy minimization where we balance on the one hand the regularity of the cylindrical function given by the distance of the surface points to cylinder axis, and on the other hand, the distance between the projection of the surface points on the images and the expected location following the precomputed disparity map estimation between pair of images. One interesting advantage of this approach is that we regularize the 3D surface by means of a bi-dimensio al minimization problem. We show some experimental results for large stereo sequences.
Resumo:
[EN] In this paper we present a method for the regularization of 3D cylindrical surfaces. By a cylindrical surface we mean a 3D surface that can be expressed as an application S(l; µ) ! R3 , where (l; µ) represents a cylindrical parametrization of the 3D surface. We built an initial cylindrical parametrization of the surface. We propose a new method to regularize such cylindrical surface. This method takes into account the information supplied by the disparity maps computed between pair of images to constraint the regularization of the set of 3D points. We propose a model based on an energy which is composed of two terms: an attachment term that minimizes the difference between the image coordinates and the disparity maps and a second term that enables a regularization by means of anisotropic diffusion. One interesting advantage of this approach is that we regularize the 3D surface by using a bi-dimensional minimization problem.