252 resultados para COALESCENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designer peptides have recently been developed as building blocks for novel self-assembled materials with stimuli-responsive properties. To date, such materials have been based on self-assembly in bulk aqueous solution or at solid-fluid interfaces. We have designed a 21-residue peptide, AM1, as a stimuli-responsive surfactant that switches molecular architectures at a fluid-fluid interface in response to changes in bulk aqueous solution composition. In the presence of divalent zinc at neutral pH, the peptide forms a mechanically strong 'film state'. In the absence of metal ions or at acid pH, the peptide adsorbs to form a mobile 'detergent state'. The two interfacial states can be actively and reversibly switched. Switching between the two states by a change in pH or the addition of a chelating agent leads to rapid emulsion coalescence or foam collapse. This work introduces a new class of surfactants that offer an environmentally friendly approach to control the stability of interfaces in foams, emulsions and fluid-fluid interfaces more generally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite-element simulations are used to obtain many thousands of yield points for porous materials with arbitrary void-volume fractions with spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic three-dimensional arrays. Multi-axial stress states are explored. We show that the data may be fitted by a yield function which is similar to the Gurson-Tvergaard-Needleman (GTN) form, but which also depends on the determinant of the stress tensor, and all additional parameters may be expressed in terms of standard GTN-like parameters. The dependence of these parameters on the void-volume fraction is found. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a series of sustainable peptide surfactants (Pepfactants) capable of stabilizing foams and emulsions in a stimuli-responsive manner, based on the reversible formation of a mechanically strong interfacial film. Under conditions where the interfacially adsorbed peptide forms a mechanically strong film state, foam or emulsion stabilization occurs as a direct result of the film strength. Under conditions where the interfacially adsorbed peptide forms a mobile detergent state, foam or emulsion stabilization is either reduced, or does not occur. Preformed foams or emulsions stabilized by Pepfactants undergo rapid phase coalescence when the film state is converted to the detergent state. Switching between film and detergent states is readily and reversibly achieved by a change in the bulk solution composition, such as a change in pH, or the addition or sequestering of metal ions. Copyright © 2007 Curtin University of Technology and John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the hydrodynamics and mass transfer characteristics of a liquid-liquid extraction process in a 450 mm diameter, 4.30 m high Rotating Disc Contactor (R.D.C.) has been undertaken. The literature relating to this type of extractor and the relevant phenomena, such as droplet break-up and coalescence, drop mass transfer and axial mixing has been revjewed. Experiments were performed using the system C1airsol-350-acetone-water and the effects of drop size, drop size-distribution and dispersed phase hold-up on the performance of the R.D.C. established. The results obtained for the two-phase system C1airso1-water have been compared with published correlations: since most of these correlations are based on data obtained from laboratory scale R.D.C.'s, a wide divergence was found. The hydrodynamics data from this study have therefore been correlated to predict the drop size and the dispersed phase hold-up and agreement has been obtained with the experimental data to within +8% for the drop size and +9% for the dispersed phase hold-up. The correlations obtained were modified to include terms involving column dimensions and the data have been correlated with the results obtained from this study together with published data; agreement was generally within +17% for drop size and within +14% for the dispersed phase hold-up. The experimental drop size distributions obtained were in excellent agreement with the upper limit log-normal distributions which should therefore be used in preference to other distribution functions. In the calculation of the overall experimental mass transfer coefficient the mean driving force was determined from the concentration profile along the column using Simpson's Rule and a novel method was developed to calculate the overall theoretical mass transfer coefficient Kca1, involving the drop size distribution diagram to determine the volume percentage of stagnant, circulating and oscillating drops in the sample population. Individual mass transfer coefficients were determined for the corresponding droplet state using different single drop mass transfer models. Kca1 was then calculated as the fractional sum of these individual coefficients and their proportions in the drop sample population. Very good agreement was found between the experimental and theoretical overall mass transfer coefficients. Drop sizes under mass transfer conditions were strongly dependant upon the direction of mass transfer. Drop Sizes in the absence of mass transfer were generally larger than those with solute transfer from the continuous to the dispersed phase, but smaller than those with solute transfer in the opposite direction at corresponding phase flowrates and rotor speed. Under similar operating conditions hold-up was also affected by mass transfer; it was higher when solute transfered from the continuous to the dispersed phase and lower when direction was reversed compared with non-mass transfer operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature relating to the extraction of the aromatics, benzene, toluene and xylene (BTX) using different commercial solvents, and to mixer-settler design and performance, has been reviewed. Liquid-liquid equilibria of the ternary systems: hexane-benzene-sulfolane, n-heptane-toluene-sulfolane, and octane-xylene-sulfolane were determined experimentally at temperatures of 30oC, 35oC, and 40oC. The work was then extended to a multicomponent system. The data were correlated by using Hand's method and were found to be in a good agreement with theoretical predictions using the UNIFAC method. A study was made of the performance of a 10-stage laboratory mixer-settler cascade for the extraction of BTX from a synthetic reformate utilizing sulfolane as a solvent. Murphree stage efficiency decreased with stage number but 99% extraction was achievable within 4 stages. The effects of temperature, phase ratio, and agitator speed were investigated. The efficiency increased with agitator speed but > 1050 rpm resulted in secondary haze formation. An optimum temperature of 30oC was selected from the phase equilibria; the optimum solvent: feed ratio was 3:1 for 4 stages. The experimental overall mass transfer coefficients were compared with those predicted from single drop correlations and were in all cases greater, by a factor of 1.5 to 3, due to the surface renewal associated with drop break-up and coalescence promoted by agitation. A similar investigation was performed using real reformate from the Kuwait Oil Company. The phase ratios were in the range 0.5 to 1 to 3.25 to 1, the agitator speed 1050 rpm, and the operating temperature 30oC. A maximum recovery of 99% aromatics was achieved in 4 stages at a phase ratio of 3.25 to 1. A backflow model was extended to simulate conditions in the mixer-settler cascade with this multicomponent system. Overall mass transfer coefficients were estimated by obtaining the best fit between experimental and predicted concentration profiles. They were up to 10% greater than those with the synthetic feed but close agreement was not possible because the distribution coefficient and phase ratio varied with stage number. Sulfolane was demonstrated to be an excellent solvent for BTX recovery and a mixer-settler cascade was concluded to be a technically viable alternative to agitated columns for this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work described in this thesis is directed to the examination of the hypothesis that ultrasound may be used to perturb molecular motion in the liquid phase. These changes can then be detected by nuclear magnetic resonance (NMR) in spin-lattice and spin-spin relaxation times. The objective being to develop a method capable of reducing the pulsed NMR acquisition times of slowly relaxing nuclei. The thesis describes the theoretical principles underlying both NMR spectroscopy and ultrasonics with particular attention being paid to factors that impinge on testing the above hypothesis. Apparatus has been constructed to enable ultrasound at frequencies between 1 and 10 mega-hertz with a variable power up to 100W/cm-2 to be introduced in the NMR sample. A broadband high frequency generator is used to drive PZT piezo-electric transducer via various transducer to liquid coupling arrangements. A commercial instrument of 20 kilo-hertz has also been employed to test the above hypothesis and also to demonstrate the usefulness of ultrasound in sonochemistry. The latter objective being, detection of radical formation in monomer and polymer ultrasonic degradation. The principle features of the results obtained are: Ultrasonic perturbation of T1 is far smaller for pure liquids than is for mixtures. The effects appear to be greater on protons (1H) than on carbon-13 nuclei (13C) relaxation times. The observed effect of ultrasonics is not due to temperature changes in the sample. As the power applied to the transducer is progressively increased T1 decreases to a minimum and then increases. The T1's of the same nuclei in different functional groups are influenced to different extents by ultrasound. Studies of the 14N resonances from an equimolar mixture of N, N-dimethylformamide and deuterated chloroform with ultrasonic frequencies at 1.115, 6, 6.42 and 10 MHz show that as the frequency is increased the NMR signal to noise ratio decreases to zero at the Larmor frequency of 6.42 MHz and then again rises. This reveals the surprising indication that an effect corresponding to nuclear acoustic saturation in the liquid may be observable. Ultrasonic irradiation of acidified ammonium chloride solution at and around 6.42 MHz appears to cause distinctive changes in the proton-nitrogen J coupling resonance at 89.56 MHz. Ultrasonic irradiation of N, N-dimethylacetamide at 2 KHz using the lowest stable power revealed the onset of coalescence in the proton spectrum. The corresponding effect achieved by direct heating required a temperature rise of approximately 30oC. The effects of low frequency (20 KHz) on relaxation times appear to be nil. Detection of radical formation proved difficult but is still regarded as the principle route for monomer and polymer degradation. The initial hypothesis is considered proven with the results showing significant changes in the mega-hertz region and none at 20 KHz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the factors influencing the distribution of -amyloid (Abeta) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic A deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Abeta deposits were distributed either in clusters 200-6400 microm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 microm in diameter. In some regions, smaller clusters of Abeta deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Abeta deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Abeta deposits and blood vessels, the classic Abeta deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Abeta deposition in the temporal lobe in sporadic AD. A regular distribution of Abeta deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms by which drops of secondary liquid dispersion ie. <100μ m, are collected, coalesced and transferred have been studied in particulate beds of different sizes and heights of glass ballotini. The apparatus facilitated different coalescer cell arrangements. The liquid-liquid system was toluene/de-ionised water. The inlet drop size distribution was measured by microscopy and using the Malvern Particle Size analyser; the outlet dispersion was sized by photography. The effect of packed height and packing size upon critical velocity, pressure drop and coalescence efficiency have been investigated. Single and two phase flow pressure drops across the packing were correlated by modified Blake-Kozeny equations. Two phase pressure drop was correlated by two equations, one for large ballotini sizes (267μm - 367μm), the other for small ballotini sizes (93μm- 147.5μm). The packings were efficient coalescers up to critical velocities of 3 x 10-2 m/s to 5 x 10-2 m/s. The saturation was measured across the bed using relative permeability and a mathematical model developed which related this profile to measured pressure drops. Filter coefficients for the range of packing studied were found to be accurately predicted from a modified queueing drop model. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26  In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β      Γ ((q-3/β) +1) d qp = d fr  .α        Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The literature relating to sieve plate liquid extraction columns and relevant hydrodynamic phenomena have been surveyed. Mass transfer characteristics during drop formation, rise and coalescence, and related models were also reviewed. Important design parameters i.e. flooding, dispersed phase hold-up, drop size distribution, mean drop size, coalescence/flocculation zone height beneath a plate and jetting phenomena were investigated under non-mass transfer and mass transfer conditions in a 0.45m diameter, 2.3m high sieve plate column. This column had provision for four different plate designs, and variable plate spacing and downcomer heights, and the system used was Clairsol `350' (dispersed) - acetone - deionised water (continuous) with either direction of mass transfer. Drop size distributions were best described by the functions proposed by Gal-or, and then Mugele-Evans. Using data from this study and the literature, correlations were developed for dispersed phase hold-up, mean drop size in the preferred jetting regime and in the non-jetting regime, and coalescence zone height. A method to calculate the theoretical overall mass transfer coefficient allowing for the range of drop sizes encountered in the column gave the best fit to experimental data. This applied the drop size distribution diagram to estimate the volume percentage of stagnant, circulating and oscillating drops in the drop population. The overall coefficient Kcal was then calculated as the fractional sum of the predicted individual single drop coefficients and their proportion in the drop population. In a comparison between the experimental and calculated overall mass transfer coefficients for cases in which all the drops were in the oscillating regime (i.e. 6.35mm hole size plate), and for transfer from the dispersed(d) to continuous(c) phase, the film coefficient kd predicted from the Rose-Kintner correlation together with kc from that of Garner-Tayeban gave the best representation. Droplets from the 3.175mm hole size plate, were of a size to be mainly circulating and oscillating; a combination of kd from the Kronig-Brink (circulating) and Rose-Kintner (oscillating) correlations with the respective kc gave the best agreement. The optimum operating conditions for the SPC were identified and a procedure proposed for design from basic single drop data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some of the problems arising from the inherent instability of emulsions are discussed. Aspects of emulsion stability are described and particular attention is given to the influence of the chemical nature of the dispersed phase on adsorbed film structure and stability, Emulsion stability has been measured by a photomicrographic technique. Electrophoresis, interfacial tension and droplet rest-time data were also obtained. Emulsions were prepared using a range of oils, including aliphatic and aromatic hydrocarbons, dispersed In a solution of sodium dodecyl sulphate. In some cases a small amount of alkane or alkanol was incorporated into the oil phase. In general the findings agree with the classical view that the stability of oil-in-water emulsions is favoured by a closely packed interfacial film and appreciable electric charge on the droplets. The inclusion of non-ionic alcohol leads to enhanced stability, presumably owing to the formation of a "mixed" interfacial film which is more closely packed and probably more coherent than that of the anionic surfactant alone. In some instances differences in stability cannot he accounted for simply by differences in interfacial adsorption or droplet charge. Alternative explanations are discussed and it is postulated that the coarsening of emulsions may occur not only hy coalescence but also through the migration of oil from small droplets to larger ones by molecular diffusion. The viability of using the coalescence rates of droplets at a plane interface as a guide to emulsion stability has been researched. The construction of a suitable apparatus and the development of a standard testing procedure are described. Coalescence-time distributions may be correlated by equations similar to those presented by other workers, or by an analysis based upon the log-normal function. Stability parameters for a range of oils are discussed in terms of differences in film drainage and the natl1re of the interfacial film. Despite some broad correlations there is generally poor agreement between droplet and emulsion stabilities. It is concluded that hydrodynamic factors largely determine droplet stability in the systems studied. Consequently droplet rest-time measurements do not provide a sensible indication of emulsion stability,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis considers the computer simulation of moist agglomerate collisions using the discrete element method (DEM). The study is confined to pendular state moist agglomerates, at which liquid is presented as either absorbed immobile films or pendular liquid bridges and the interparticle force is modelled as the adhesive contact force and interstitial liquid bridge force. Algorithms used to model the contact force due to surface adhesion, tangential friction and particle deformation have been derived by other researchers and are briefly described in the thesis. A theoretical study of the pendular liquid bridge force between spherical particles has been made and the algorithms for the modelling of the pendular liquid bridge force between spherical particles have been developed and incorporated into the Aston version of the DEM program TRUBAL. It has been found that, for static liquid bridges, the more explicit criterion for specifying the stable solution and critical separation is provided by the total free energy. The critical separation is given by the cube root of liquid bridge volume to a good approximation and the 'gorge method' of evaluation based on the toroidal approximation leads to errors in the calculated force of less than 10%. Three dimensional computer simulations of an agglomerate impacting orthogonally with a wall are reported. The results demonstrate the effectiveness of adding viscous binder to prevent attrition, a common practice in process engineering. Results of simulated agglomerate-agglomerate collisions show that, for colinear agglomerate impacts, there is an optimum velocity which results in a near spherical shape of the coalesced agglomerate and, hence, minimises attrition due to subsequent collisions. The relationship between the optimum impact velocity and the liquid viscosity and surface tension is illustrated. The effect of varying the angle of impact on the coalescence/attrition behaviour is also reported. (DX 187, 340).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MRI of fluids containing lipid coated microbubbles has been shown to be an effective toot for measuring the local fluid pressure. However, the intrinsically buoyant nature of these microbubbles precludes lengthy measurements due to their vertical migration under gravity and pressure-induced coalescence. A novel preparation is presented which is shown to minimize both these effects for at least 25 min. By using a 2% polysaccharide gel base with a small concentration of glycerol and 1,2-distearoyl-sn-glycero-3-phosphocholine coated gas microbubbles, MR measurements are made for pressures between 0.95 and 1.44 bar. The signal drifts due to migration and amalgamation are shown to be minimized for such an experiment whilst yielding very high NMR sensitivities up to 38% signal change per bar.