984 resultados para CHEMICAL SENSORS
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present the simulation, fabrication and characterization of a tunable Bragg filter employing amorphous dielectric films deposited by plasma enhanced chemical vapor deposition technique on a crystalline silicon substrate. The optical device was built using conventional microelectronic processes and consisted of fifteen periodic intervals of Si3N4 layers separated by air with appropriated thickness and lengths to produce transmittance attenuation peaks in the visible region. For this, previous simulations were realized based in the optical parameters of the dielectric film, which were extracted from ellipsometry and profilometry techniques. For the characterization of the optical interferential filter, a 633 nm monochromatic light was injected on the filter, and then the transmitted output light was collected and conducted to a detector through an optical waveguide made also of amorphous dielectric layers. Afterwards, the optical filter was mounted on a Peltier thermoelectric device in order to control the temperature of the optical device. When the temperature of filter changes, a refractive index variation is originated in the dielectric film due to the thermo-optic effect, producing a shift of attenuation peak, which can be well predicted by numerical simulations. This characteristic allows this device to be used as a thermo-optic sensor. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was the development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The proposed low costs structures are similar to macroscopic wastewater treatment systems, named baffles, and allow disassemble. They were simulated using FEMLAB 3.2b package and manufactured in acrylic with conventional tools. Tests for retention or selection of particles in water or air and viscous fluids in water were carried out. Either in air or water particles with 50 mu m diameter will be retained but not with 13 mu m diameter. In aqueous flow, it is also possible the retention of viscous samples, such as silicone 350 cSt. The simulated results showed good agreement with experimental measurements. These miniaturized structures can be useful in sample pretreatment for chemical analysis and microorganism manipulation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present work reports the thermal annealing process, the number of layer and electrochemical process effect in the optical response quality of Bragg and microcavity devices that were applied as organic solvent sensors. These devices have been obtained by using porous silicon (PS) technology. The optical characterization of the Bragg reflector, before annealing, showed a broad photonic band-gap structure with blue shifted and narrowed after annealing process. The electrochemical process used to obtain the PS-based device imposes the limit in the number of layers because of the chemical dissolution effect. The interface roughness minimizations in the devices have been achieved by using the double electrochemical cell setup. The microcavity devices showed to have a good sensibility for organic solvent detection. The thermal annealed device showed better sensibility feature and this result was attributed to passivation of the surface devices. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This study presents a methodology for the characterization of construction and demolition (C&D) waste recycled aggregates based on a combination of analytical techniques (X-ray fluorescence (XRF), soluble ions, semi-quantitative X-ray diffraction (XRD), thermogravimetric analysis (TCA-DTG) and hydrochloric acid (HCl) selective dissolution). These combined analytical techniques allow for the estimation of the amount of cement paste, its most important hydrated and carbonated phases, as well as the amount of clay and micas. Details of the methodology are presented here and the results of three representative C&D samples taken from the Sao Paulo region in Brazil are discussed. Chemical compositions of mixed C&D aggregate samples have mostly been influenced by particle size rather than the visual classification of C&D into red or grey and geographical origin. The amount of measured soluble salts in C&D aggregates (0.15-25.4 mm) is lower than the usual limits for mortar and concrete production. The content of porous cement paste in the C&D aggregates is around 19.3% (w/w). However, this content is significantly lower than the 43% detected for the C&D powders (< 0.15 min). The clay content of the powders was also high, potentially resulting from soil intermixed with the C&D waste, as well as poorly burnt red ceramic. Since only about 50% of the measured CaO is combined with CO(2), the powders have potential use as raw materials for the cement industry. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Most metal ions are toxic to plants, even at low concentrations, despite the fact that some are essential for growth and play key roles in metabolism. The majority of metals induce the formation of reactive oxygen species, which require the synthesis of additional antoxidant compounds and enzymes for their removal. New techniques that have greatly improved the identification, localisation and quantification of metals within plant tissues have led to the science of metallomics. This advancement in knowledge should eventually allow the characterisation of plants used in the process of phytoremediation of soils contaminated with toxic metals.
Resumo:
In this work, supercritical technology was used to obtain extracts from Ocimum basilicum (sweet basil) with CO(2) and the cosolvent H(2)O at 1, 10, and 20% (w/w). The raw material was obtained from hydroponic cultivation. The extract`s global yield isotherms, chemical compositions, antioxidant activity, and cost of manufacturing were determined. The extraction assays were done for pressures of 10 to 30 MPa at 303 to 323 K. The identification of the compounds present in the extracts was made by GC-MS and ESI-MS. The antioxidant activity of extracts was determined using the coupled reaction of beta-carotene and linolenic acid. At 1% of cosolvent, the largest global yield was obtained at 10 MPa and 303 K (2%, dry basis-d.b.); at 10% of cosolvent the largest global yield was obtained at 10 and 15 MPa (11%, d.b.), and at 20% of cosolvent the largest global yield was detected at 30 MPa and 303 K (24%, d.b.). The main components identified in the extracts were eugenol, germacrene-D, epi-alpha-cadinol, malic acid, tartaric acid, ramnose, caffeic acid, quinic acid, kaempferol, caffeoylquinic acid, and kaempferol 3-O-glucoside. Sweet basil extracts exhibited high antioxidant activity compared to beta-carotene. Three types of SFE extracts from sweet basil were produced, for which the estimated cost of manufacturing (class 5 type) varied from US$ 47.96 to US$ 1,049.58 per kilogram of dry extract.
Resumo:
Relationships between the chemical composition of the 9th- to 11th-rib section and the chemical composition of the carcass and empty body were evaluated for Bos indicus (108 Nellore and 36 Guzerah; GuS) and tropically adapted Bos taurus (56 Caracu; CaS) bulls, averaging 20 to 24 mo of age at slaughter. Nellore cattle were represented by 56 animals from the selected herd (NeS) and 52 animals from the control herd (NeC). The CaS and GuS bulls were from selected herds. Selected herds were based on 20 yr of selection for postweaning BW. Carcass composition was obtained after grinding, homogenizing, sampling, and analyzing soft tissue and bones. Similarly, empty body composition was obtained after grinding, homogenizing, sampling, analyzing, and combining blood, hide, head + feet, viscera, and carcass. Bulls were separated into 2 groups. Group 1 was composed of 36 NeS, 36 NeC, 36 CaS, and 36 GuS bulls and had water, ether extract (EE), protein, and ash chemically determined in the 9th- to 11th-rib section and in the carcass. Group 2 was composed of 20 NeS, 16 NeC, and 20 CaS bulls and water, EE, protein, and ash were determined in the 9th-to 11th-rib section, carcass, and empty body. Linear regressions were developed between the carcass and the 9th-to 11th-rib section compositions for group 1 and between carcass and empty body compositions for group 2. The 9th-to 11th-rib section percentages of water (RWt) and EE (RF) predicted the percentages of carcass water (CWt) and carcass fat (CF) with high precision: CWt, % = 29.0806 + 0.4873 x RWt, % (r(2) = 0.813, SE = 1.06) and CF, % = 10.4037 + 0.5179 x RF, % (r(2) = 0.863, SE = 1.26), respectively. Linear regressions between percentage of CWt and CF and empty body water (EBWt) and empty body fat (EBF) were also predicted with high precision: EBWt, % = -9.6821 + 1.1626 x CWt, % (r(2) = 0.878, SE = 1.43) and EBF, % = 0.3739 + 1.0386 x CF, % (r(2) = 0.982, SE = 0.65), respectively. Chemical composition of the 9th-to 11th-rib section precisely estimated carcass percentages of water and EE. These regressions can accurately predict carcass and empty body compositions for Nellore, Guzerah, and Caracu breeds.
Resumo:
This study investigated the influence of heat treatment on the chemical composition of Eucalyptus saligna and Pinus caribaea var. hondurensis woods to understand its role in wood processing. E. saligna and P. caribaea var. hondurensis woods were treated in a laboratorial electric furnace at 120, 140, 160 and 180 degrees C to induce their heat treatment. The chemical composition of the resulting products and those from original wood were determined by gas chromatography. Eucalyptus and Pinus showed a significant reduction in arabinose, manose, galactose and xylose contents when submitted to increasing temperatures. No significant alteration in glucose content was observed. Lignin content, however, increased during the heat process. There was a significant reduction in extractive content for Eucalyptus. On the other hand, a slight increase in extractive content has been determined for the Pinus wood. and that only for the highest temperature. These different behaviors can be explained by differences in chemical constituents between softwoods and hardwoods. The results obtained in this study provide important information for future research and utilization of thermally modified wood. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sensory analysis is one of the most suitable processes for measuring oxidative damage and determining the shelf-life of nuts, but it is an expensive and time-consuming methodology. Thus, our objective was to correlate sensory data and chemical markers obtained during the accelerated oxidation of Brazil nuts and to determine the chemical parameters values associated with the sensory shelf-life of the nuts as established by the consumers. Brazil nuts were kept at 80 A degrees C for 21 days. At intervals of 2 days, the oxidized odor of the samples was analyzed by nine trained panelists using a discriminative scale, and the oil was extracted to quantify the chemical parameters. A high (r > 0.95) and significant correlation (p < 0.05) was observed between the sensory data and the hydroperoxide concentration (PV), para-anisidine value (pAV), hexanal content, and alpha- and gamma-tocopherol concentrations. When compared with fresh samples, sensory identification of oxidized odor occurred on the 4th day, noticeably earlier than changes in chemical markers (12th day). Consumers rejected the nuts after 12 days of storage, which corresponded to PV = 18.8 meq kg(-1) oil, pAV = 7.68, hexanal = 48.95 mu mol 100 g(-1) oil, alpha-tocopherol = 15.01 mg kg(-1) oil, and gamma + beta-tocopherol = 73.88 mg kg(-1) oil. Our study suggests that simple spectrometric methods, such as PV and pAV, can be used to estimate the oxidative shelf-life of nuts based on sensory analysis.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
Foods provide essential and bioactive compounds with health-promoting properties such as antioxidant, anti-inflammatory, and hypocholesterolemic activities, which have been related to vitamins A, C, and E and phenolic compounds such as flavonoids. Therefore, the aim of this work was to identify potential sources of bioactive compounds through the determination of flavonoids and ellagic acid contents and the in vitro antioxidant capacity and alpha-glucosidase and alpha-amylase inhibitory activities of Brazilian native fruits and commercial frozen pulps. Camu-camu, cambuci, uxi, and tucuma and commercial frozen pulps of cambuci, cagaita, coquinho azedo, and araca presented the highest antioxidant capacities. Cambuci and cagaita exhibited the highest alpha-glucosidase and alpha-amylase inhibitory activities. Quercetin and kaempferol derivatives were the main flavonoids present in most of the samples. Ellagic acid was detected only in umbu, camu-camu, cagaita, araca, and cambuci. According to the results, native Brazilian fruits can be considered as excellent sources of bioactive compounds.